MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniin Unicode version

Theorem uniin 3747
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uninqs 24204 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniin  |-  U. ( A  i^i  B )  C_  ( U. A  i^i  U. B )

Proof of Theorem uniin
StepHypRef Expression
1 19.40 1608 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  /\  (
x  e.  y  /\  y  e.  B )
)  ->  ( E. y ( x  e.  y  /\  y  e.  A )  /\  E. y ( x  e.  y  /\  y  e.  B ) ) )
2 elin 3266 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
32anbi2i 678 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  ( A  i^i  B ) )  <->  ( x  e.  y  /\  (
y  e.  A  /\  y  e.  B )
) )
4 anandi 804 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  e.  A  /\  y  e.  B
) )  <->  ( (
x  e.  y  /\  y  e.  A )  /\  ( x  e.  y  /\  y  e.  B
) ) )
53, 4bitri 242 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ( A  i^i  B ) )  <->  ( (
x  e.  y  /\  y  e.  A )  /\  ( x  e.  y  /\  y  e.  B
) ) )
65exbii 1580 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  i^i  B
) )  <->  E. y
( ( x  e.  y  /\  y  e.  A )  /\  (
x  e.  y  /\  y  e.  B )
) )
7 eluni 3730 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
8 eluni 3730 . . . . 5  |-  ( x  e.  U. B  <->  E. y
( x  e.  y  /\  y  e.  B
) )
97, 8anbi12i 681 . . . 4  |-  ( ( x  e.  U. A  /\  x  e.  U. B
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  /\  E. y
( x  e.  y  /\  y  e.  B
) ) )
101, 6, 93imtr4i 259 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  i^i  B
) )  ->  (
x  e.  U. A  /\  x  e.  U. B
) )
11 eluni 3730 . . 3  |-  ( x  e.  U. ( A  i^i  B )  <->  E. y
( x  e.  y  /\  y  e.  ( A  i^i  B ) ) )
12 elin 3266 . . 3  |-  ( x  e.  ( U. A  i^i  U. B )  <->  ( x  e.  U. A  /\  x  e.  U. B ) )
1310, 11, 123imtr4i 259 . 2  |-  ( x  e.  U. ( A  i^i  B )  ->  x  e.  ( U. A  i^i  U. B ) )
1413ssriv 3105 1  |-  U. ( A  i^i  B )  C_  ( U. A  i^i  U. B )
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    e. wcel 1621    i^i cin 3077    C_ wss 3078   U.cuni 3727
This theorem is referenced by:  psss  14158  tgval  16525  uninqs  24204  uuniin  24252  inposet  24444  unint2t  24684  mapdunirnN  30529
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-in 3085  df-ss 3089  df-uni 3728
  Copyright terms: Public domain W3C validator