MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Unicode version

Theorem uniiccdif 21058
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
Assertion
Ref Expression
uniiccdif  |-  ( ph  ->  ( U. ran  ( (,)  o.  F )  C_  U.
ran  ( [,]  o.  F )  /\  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 ) )

Proof of Theorem uniiccdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun1 3519 . . 3  |-  U. ran  ( (,)  o.  F ) 
C_  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
2 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3 ovolfcl 20950 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
42, 3sylan 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 1st `  ( F `
 x ) )  e.  RR  /\  ( 2nd `  ( F `  x ) )  e.  RR  /\  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) ) )
5 rexr 9429 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) )  e.  RR  ->  ( 1st `  ( F `  x ) )  e. 
RR* )
6 rexr 9429 . . . . . . . 8  |-  ( ( 2nd `  ( F `
 x ) )  e.  RR  ->  ( 2nd `  ( F `  x ) )  e. 
RR* )
7 id 22 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) )  <_  ( 2nd `  ( F `  x )
)  ->  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) )
8 prunioo 11414 . . . . . . . 8  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR*  /\  ( 2nd `  ( F `  x ) )  e. 
RR*  /\  ( 1st `  ( F `  x
) )  <_  ( 2nd `  ( F `  x ) ) )  ->  ( ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  u.  {
( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
95, 6, 7, 8syl3an 1260 . . . . . . 7  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) )  ->  (
( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
104, 9syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )  =  ( ( 1st `  ( F `  x
) ) [,] ( 2nd `  ( F `  x ) ) ) )
11 fvco3 5768 . . . . . . . . 9  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
122, 11sylan 471 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( (,) `  ( F `  x )
) )
13 inss2 3571 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
142ffvelrnda 5843 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1513, 14sseldi 3354 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  e.  ( RR  X.  RR ) )
16 1st2nd2 6613 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ( RR  X.  RR )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1715, 16syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  NN )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1817fveq2d 5695 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( (,) `  ( F `  x
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
19 df-ov 6094 . . . . . . . . 9  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
2018, 19syl6eqr 2493 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( (,) `  ( F `  x
) )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
2112, 20eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
22 df-pr 3880 . . . . . . . 8  |-  { ( ( 1st  o.  F
) `  x ) ,  ( ( 2nd 
o.  F ) `  x ) }  =  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } )
23 fvco3 5768 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st  o.  F
) `  x )  =  ( 1st `  ( F `  x )
) )
242, 23sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 1st  o.  F ) `
 x )  =  ( 1st `  ( F `  x )
) )
25 fvco3 5768 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 2nd  o.  F
) `  x )  =  ( 2nd `  ( F `  x )
) )
262, 25sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( 2nd  o.  F ) `
 x )  =  ( 2nd `  ( F `  x )
) )
2724, 26preq12d 3962 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  { ( ( 1st  o.  F
) `  x ) ,  ( ( 2nd 
o.  F ) `  x ) }  =  { ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )
2822, 27syl5eqr 2489 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( { ( ( 1st  o.  F ) `  x
) }  u.  {
( ( 2nd  o.  F ) `  x
) } )  =  { ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } )
2921, 28uneq12d 3511 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( ( (,)  o.  F
) `  x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) )  =  ( ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) )  u. 
{ ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) } ) )
30 fvco3 5768 . . . . . . . 8  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( [,]  o.  F
) `  x )  =  ( [,] `  ( F `  x )
) )
312, 30sylan 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( [,] `  ( F `  x )
) )
3217fveq2d 5695 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN )  ->  ( [,] `  ( F `  x
) )  =  ( [,] `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
33 df-ov 6094 . . . . . . . 8  |-  ( ( 1st `  ( F `
 x ) ) [,] ( 2nd `  ( F `  x )
) )  =  ( [,] `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
3432, 33syl6eqr 2493 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  ( [,] `  ( F `  x
) )  =  ( ( 1st `  ( F `  x )
) [,] ( 2nd `  ( F `  x
) ) ) )
3531, 34eqtrd 2475 . . . . . 6  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( ( 1st `  ( F `  x )
) [,] ( 2nd `  ( F `  x
) ) ) )
3610, 29, 353eqtr4rd 2486 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( [,]  o.  F ) `
 x )  =  ( ( ( (,) 
o.  F ) `  x )  u.  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) ) )
3736iuneq2dv 4192 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( [,]  o.  F ) `  x
)  =  U_ x  e.  NN  ( ( ( (,)  o.  F ) `
 x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) ) )
38 iccf 11388 . . . . . . 7  |-  [,] :
( RR*  X.  RR* ) --> ~P RR*
39 ffn 5559 . . . . . . 7  |-  ( [,]
: ( RR*  X.  RR* )
--> ~P RR*  ->  [,]  Fn  ( RR*  X.  RR* )
)
4038, 39ax-mp 5 . . . . . 6  |-  [,]  Fn  ( RR*  X.  RR* )
41 rexpssxrxp 9428 . . . . . . . 8  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
4213, 41sstri 3365 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
43 fss 5567 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
442, 42, 43sylancl 662 . . . . . 6  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
45 fnfco 5577 . . . . . 6  |-  ( ( [,]  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( [,]  o.  F )  Fn  NN )
4640, 44, 45sylancr 663 . . . . 5  |-  ( ph  ->  ( [,]  o.  F
)  Fn  NN )
47 fniunfv 5964 . . . . 5  |-  ( ( [,]  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( [,] 
o.  F ) `  x )  =  U. ran  ( [,]  o.  F
) )
4846, 47syl 16 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( [,]  o.  F ) `  x
)  =  U. ran  ( [,]  o.  F ) )
49 iunun 4251 . . . . 5  |-  U_ x  e.  NN  ( ( ( (,)  o.  F ) `
 x )  u.  ( { ( ( 1st  o.  F ) `
 x ) }  u.  { ( ( 2nd  o.  F ) `
 x ) } ) )  =  (
U_ x  e.  NN  ( ( (,)  o.  F ) `  x
)  u.  U_ x  e.  NN  ( { ( ( 1st  o.  F
) `  x ) }  u.  { (
( 2nd  o.  F
) `  x ) } ) )
50 ioof 11387 . . . . . . . . 9  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
51 ffn 5559 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
5250, 51ax-mp 5 . . . . . . . 8  |-  (,)  Fn  ( RR*  X.  RR* )
53 fnfco 5577 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( (,)  o.  F )  Fn  NN )
5452, 44, 53sylancr 663 . . . . . . 7  |-  ( ph  ->  ( (,)  o.  F
)  Fn  NN )
55 fniunfv 5964 . . . . . . 7  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
5654, 55syl 16 . . . . . 6  |-  ( ph  ->  U_ x  e.  NN  ( ( (,)  o.  F ) `  x
)  =  U. ran  ( (,)  o.  F ) )
57 iunun 4251 . . . . . . 7  |-  U_ x  e.  NN  ( { ( ( 1st  o.  F
) `  x ) }  u.  { (
( 2nd  o.  F
) `  x ) } )  =  (
U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  u.  U_ x  e.  NN  { ( ( 2nd  o.  F
) `  x ) } )
58 fo1st 6596 . . . . . . . . . . . . . 14  |-  1st : _V -onto-> _V
59 fofn 5622 . . . . . . . . . . . . . 14  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
6058, 59ax-mp 5 . . . . . . . . . . . . 13  |-  1st  Fn  _V
61 ssv 3376 . . . . . . . . . . . . . 14  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  _V
62 fss 5567 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  _V )  ->  F : NN --> _V )
632, 61, 62sylancl 662 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> _V )
64 fnfco 5577 . . . . . . . . . . . . 13  |-  ( ( 1st  Fn  _V  /\  F : NN --> _V )  ->  ( 1st  o.  F
)  Fn  NN )
6560, 63, 64sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st  o.  F
)  Fn  NN )
66 fnfun 5508 . . . . . . . . . . . 12  |-  ( ( 1st  o.  F )  Fn  NN  ->  Fun  ( 1st  o.  F ) )
6765, 66syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( 1st  o.  F ) )
68 fndm 5510 . . . . . . . . . . . 12  |-  ( ( 1st  o.  F )  Fn  NN  ->  dom  ( 1st  o.  F )  =  NN )
69 eqimss2 3409 . . . . . . . . . . . 12  |-  ( dom  ( 1st  o.  F
)  =  NN  ->  NN  C_  dom  ( 1st  o.  F ) )
7065, 68, 693syl 20 . . . . . . . . . . 11  |-  ( ph  ->  NN  C_  dom  ( 1st 
o.  F ) )
71 dfimafn2 5741 . . . . . . . . . . 11  |-  ( ( Fun  ( 1st  o.  F )  /\  NN  C_ 
dom  ( 1st  o.  F ) )  -> 
( ( 1st  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) } )
7267, 70, 71syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) } )
73 fnima 5529 . . . . . . . . . . 11  |-  ( ( 1st  o.  F )  Fn  NN  ->  (
( 1st  o.  F
) " NN )  =  ran  ( 1st 
o.  F ) )
7465, 73syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  o.  F ) " NN )  =  ran  ( 1st 
o.  F ) )
7572, 74eqtr3d 2477 . . . . . . . . 9  |-  ( ph  ->  U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  =  ran  ( 1st  o.  F ) )
76 rnco2 5345 . . . . . . . . 9  |-  ran  ( 1st  o.  F )  =  ( 1st " ran  F )
7775, 76syl6eq 2491 . . . . . . . 8  |-  ( ph  ->  U_ x  e.  NN  { ( ( 1st  o.  F ) `  x
) }  =  ( 1st " ran  F
) )
78 fo2nd 6597 . . . . . . . . . . . . . 14  |-  2nd : _V -onto-> _V
79 fofn 5622 . . . . . . . . . . . . . 14  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
8078, 79ax-mp 5 . . . . . . . . . . . . 13  |-  2nd  Fn  _V
81 fnfco 5577 . . . . . . . . . . . . 13  |-  ( ( 2nd  Fn  _V  /\  F : NN --> _V )  ->  ( 2nd  o.  F
)  Fn  NN )
8280, 63, 81sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd  o.  F
)  Fn  NN )
83 fnfun 5508 . . . . . . . . . . . 12  |-  ( ( 2nd  o.  F )  Fn  NN  ->  Fun  ( 2nd  o.  F ) )
8482, 83syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( 2nd  o.  F ) )
85 fndm 5510 . . . . . . . . . . . 12  |-  ( ( 2nd  o.  F )  Fn  NN  ->  dom  ( 2nd  o.  F )  =  NN )
86 eqimss2 3409 . . . . . . . . . . . 12  |-  ( dom  ( 2nd  o.  F
)  =  NN  ->  NN  C_  dom  ( 2nd  o.  F ) )
8782, 85, 863syl 20 . . . . . . . . . . 11  |-  ( ph  ->  NN  C_  dom  ( 2nd 
o.  F ) )
88 dfimafn2 5741 . . . . . . . . . . 11  |-  ( ( Fun  ( 2nd  o.  F )  /\  NN  C_ 
dom  ( 2nd  o.  F ) )  -> 
( ( 2nd  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )
8984, 87, 88syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  o.  F ) " NN )  =  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )
90 fnima 5529 . . . . . . . . . . 11  |-  ( ( 2nd  o.  F )  Fn  NN  ->  (
( 2nd  o.  F
) " NN )  =  ran  ( 2nd 
o.  F ) )
9182, 90syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  o.  F ) " NN )  =  ran  ( 2nd 
o.  F ) )
9289, 91eqtr3d 2477 . . . . . . . . 9  |-  ( ph  ->  U_ x  e.  NN  { ( ( 2nd  o.  F ) `  x
) }  =  ran  ( 2nd  o.  F ) )
93 rnco2 5345 . . . . . . . . 9  |-  ran  ( 2nd  o.  F )  =  ( 2nd " ran  F )
9492, 93syl6eq 2491 . . . . . . . 8  |-  ( ph  ->  U_ x  e.  NN  { ( ( 2nd  o.  F ) `  x
) }  =  ( 2nd " ran  F
) )
9577, 94uneq12d 3511 . . . . . . 7  |-  ( ph  ->  ( U_ x  e.  NN  { ( ( 1st  o.  F ) `
 x ) }  u.  U_ x  e.  NN  { ( ( 2nd  o.  F ) `
 x ) } )  =  ( ( 1st " ran  F
)  u.  ( 2nd " ran  F ) ) )
9657, 95syl5eq 2487 . . . . . 6  |-  ( ph  ->  U_ x  e.  NN  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } )  =  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
9756, 96uneq12d 3511 . . . . 5  |-  ( ph  ->  ( U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  u.  U_ x  e.  NN  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
9849, 97syl5eq 2487 . . . 4  |-  ( ph  ->  U_ x  e.  NN  ( ( ( (,) 
o.  F ) `  x )  u.  ( { ( ( 1st 
o.  F ) `  x ) }  u.  { ( ( 2nd  o.  F ) `  x
) } ) )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
9937, 48, 983eqtr3d 2483 . . 3  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  =  ( U. ran  ( (,)  o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
1001, 99syl5sseqr 3405 . 2  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  U.
ran  ( [,]  o.  F ) )
101 ovolficcss 20953 . . . . 5  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
1022, 101syl 16 . . . 4  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  RR )
103102ssdifssd 3494 . . 3  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  RR )
104 omelon 7852 . . . . . . . . . . 11  |-  om  e.  On
105 nnenom 11802 . . . . . . . . . . . 12  |-  NN  ~~  om
106105ensymi 7359 . . . . . . . . . . 11  |-  om  ~~  NN
107 isnumi 8116 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
108104, 106, 107mp2an 672 . . . . . . . . . 10  |-  NN  e.  dom  card
109 fofun 5621 . . . . . . . . . . . . 13  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12  |-  Fun  1st
111 ssv 3376 . . . . . . . . . . . . 13  |-  ran  F  C_ 
_V
112 fof 5620 . . . . . . . . . . . . . . 15  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
11358, 112ax-mp 5 . . . . . . . . . . . . . 14  |-  1st : _V
--> _V
114113fdmi 5564 . . . . . . . . . . . . 13  |-  dom  1st  =  _V
115111, 114sseqtr4i 3389 . . . . . . . . . . . 12  |-  ran  F  C_ 
dom  1st
116 fores 5629 . . . . . . . . . . . 12  |-  ( ( Fun  1st  /\  ran  F  C_ 
dom  1st )  ->  ( 1st  |`  ran  F ) : ran  F -onto-> ( 1st " ran  F ) )
117110, 115, 116mp2an 672 . . . . . . . . . . 11  |-  ( 1st  |`  ran  F ) : ran  F -onto-> ( 1st " ran  F )
118 ffn 5559 . . . . . . . . . . . . 13  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  F  Fn  NN )
1192, 118syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  F  Fn  NN )
120 dffn4 5626 . . . . . . . . . . . 12  |-  ( F  Fn  NN  <->  F : NN -onto-> ran  F )
121119, 120sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  F : NN -onto-> ran  F )
122 foco 5630 . . . . . . . . . . 11  |-  ( ( ( 1st  |`  ran  F
) : ran  F -onto->
( 1st " ran  F )  /\  F : NN -onto-> ran  F )  -> 
( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F ) )
123117, 121, 122sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F ) )
124 fodomnum 8227 . . . . . . . . . 10  |-  ( NN  e.  dom  card  ->  ( ( ( 1st  |`  ran  F
)  o.  F ) : NN -onto-> ( 1st " ran  F )  -> 
( 1st " ran  F )  ~<_  NN ) )
125108, 123, 124mpsyl 63 . . . . . . . . 9  |-  ( ph  ->  ( 1st " ran  F )  ~<_  NN )
126 domentr 7368 . . . . . . . . 9  |-  ( ( ( 1st " ran  F )  ~<_  NN  /\  NN  ~~  om )  ->  ( 1st " ran  F )  ~<_  om )
127125, 105, 126sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( 1st " ran  F )  ~<_  om )
128 fofun 5621 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
12978, 128ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
130 fof 5620 . . . . . . . . . . . . . . 15  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
13178, 130ax-mp 5 . . . . . . . . . . . . . 14  |-  2nd : _V
--> _V
132131fdmi 5564 . . . . . . . . . . . . 13  |-  dom  2nd  =  _V
133111, 132sseqtr4i 3389 . . . . . . . . . . . 12  |-  ran  F  C_ 
dom  2nd
134 fores 5629 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  ran  F  C_ 
dom  2nd )  ->  ( 2nd  |`  ran  F ) : ran  F -onto-> ( 2nd " ran  F ) )
135129, 133, 134mp2an 672 . . . . . . . . . . 11  |-  ( 2nd  |`  ran  F ) : ran  F -onto-> ( 2nd " ran  F )
136 foco 5630 . . . . . . . . . . 11  |-  ( ( ( 2nd  |`  ran  F
) : ran  F -onto->
( 2nd " ran  F )  /\  F : NN -onto-> ran  F )  -> 
( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F ) )
137135, 121, 136sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F ) )
138 fodomnum 8227 . . . . . . . . . 10  |-  ( NN  e.  dom  card  ->  ( ( ( 2nd  |`  ran  F
)  o.  F ) : NN -onto-> ( 2nd " ran  F )  -> 
( 2nd " ran  F )  ~<_  NN ) )
139108, 137, 138mpsyl 63 . . . . . . . . 9  |-  ( ph  ->  ( 2nd " ran  F )  ~<_  NN )
140 domentr 7368 . . . . . . . . 9  |-  ( ( ( 2nd " ran  F )  ~<_  NN  /\  NN  ~~  om )  ->  ( 2nd " ran  F )  ~<_  om )
141139, 105, 140sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( 2nd " ran  F )  ~<_  om )
142 unctb 8374 . . . . . . . 8  |-  ( ( ( 1st " ran  F )  ~<_  om  /\  ( 2nd " ran  F )  ~<_  om )  ->  (
( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )
143127, 141, 142syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )
144 reldom 7316 . . . . . . . 8  |-  Rel  ~<_
145144brrelexi 4879 . . . . . . 7  |-  ( ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V )
146143, 145syl 16 . . . . . 6  |-  ( ph  ->  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V )
147 ssid 3375 . . . . . . . 8  |-  U. ran  ( [,]  o.  F ) 
C_  U. ran  ( [,] 
o.  F )
148147, 99syl5sseq 3404 . . . . . . 7  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  ( U. ran  ( (,) 
o.  F )  u.  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
149 ssundif 3762 . . . . . . 7  |-  ( U. ran  ( [,]  o.  F
)  C_  ( U. ran  ( (,)  o.  F
)  u.  ( ( 1st " ran  F
)  u.  ( 2nd " ran  F ) ) )  <->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) ) 
C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
150148, 149sylib 196 . . . . . 6  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
151 ssdomg 7355 . . . . . 6  |-  ( ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  e.  _V  ->  (
( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) ) )
152146, 150, 151sylc 60 . . . . 5  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) ) )
153 domtr 7362 . . . . 5  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  /\  ( ( 1st " ran  F )  u.  ( 2nd " ran  F ) )  ~<_  om )  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om )
154152, 143, 153syl2anc 661 . . . 4  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om )
155 domentr 7368 . . . 4  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  om 
/\  om  ~~  NN )  ->  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  NN )
156154, 106, 155sylancl 662 . . 3  |-  ( ph  ->  ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  ~<_  NN )
157 ovolctb2 20975 . . 3  |-  ( ( ( U. ran  ( [,]  o.  F )  \  U. ran  ( (,)  o.  F ) )  C_  RR  /\  ( U. ran  ( [,]  o.  F ) 
\  U. ran  ( (,) 
o.  F ) )  ~<_  NN )  ->  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 )
158103, 156, 157syl2anc 661 . 2  |-  ( ph  ->  ( vol* `  ( U. ran  ( [,] 
o.  F )  \  U. ran  ( (,)  o.  F ) ) )  =  0 )
159100, 158jca 532 1  |-  ( ph  ->  ( U. ran  ( (,)  o.  F )  C_  U.
ran  ( [,]  o.  F )  /\  ( vol* `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2972    \ cdif 3325    u. cun 3326    i^i cin 3327    C_ wss 3328   ~Pcpw 3860   {csn 3877   {cpr 3879   <.cop 3883   U.cuni 4091   U_ciun 4171   class class class wbr 4292   Oncon0 4719    X. cxp 4838   dom cdm 4840   ran crn 4841    |` cres 4842   "cima 4843    o. ccom 4844   Fun wfun 5412    Fn wfn 5413   -->wf 5414   -onto->wfo 5416   ` cfv 5418  (class class class)co 6091   omcom 6476   1stc1st 6575   2ndc2nd 6576    ~~ cen 7307    ~<_ cdom 7308   cardccrd 8105   RRcr 9281   0cc0 9282   RR*cxr 9417    <_ cle 9419   NNcn 10322   (,)cioo 11300   [,]cicc 11303   vol*covol 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-acn 8112  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-xadd 11090  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-xmet 17810  df-met 17811  df-ovol 20948
This theorem is referenced by:  uniioombllem3  21065  uniioombllem4  21066  uniioombllem5  21067  uniiccmbl  21070
  Copyright terms: Public domain W3C validator