HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Structured version   Unicode version

Theorem unierri 25523
Description: If we approximate a chain of unitary transformations (quantum computer gates)  F,  G by other unitary transformations  S,  T, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1  |-  F  e. 
UniOp
unierr.2  |-  G  e. 
UniOp
unierr.3  |-  S  e. 
UniOp
unierr.4  |-  T  e. 
UniOp
Assertion
Ref Expression
unierri  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8  |-  F  e. 
UniOp
2 unopbd 25434 . . . . . . . 8  |-  ( F  e.  UniOp  ->  F  e.  BndLinOp )
31, 2ax-mp 5 . . . . . . 7  |-  F  e.  BndLinOp
4 bdopf 25281 . . . . . . 7  |-  ( F  e.  BndLinOp  ->  F : ~H --> ~H )
53, 4ax-mp 5 . . . . . 6  |-  F : ~H
--> ~H
6 unierr.2 . . . . . . . 8  |-  G  e. 
UniOp
7 unopbd 25434 . . . . . . . 8  |-  ( G  e.  UniOp  ->  G  e.  BndLinOp )
86, 7ax-mp 5 . . . . . . 7  |-  G  e.  BndLinOp
9 bdopf 25281 . . . . . . 7  |-  ( G  e.  BndLinOp  ->  G : ~H --> ~H )
108, 9ax-mp 5 . . . . . 6  |-  G : ~H
--> ~H
115, 10hocofi 25185 . . . . 5  |-  ( F  o.  G ) : ~H --> ~H
12 unierr.3 . . . . . . . 8  |-  S  e. 
UniOp
13 unopbd 25434 . . . . . . . 8  |-  ( S  e.  UniOp  ->  S  e.  BndLinOp )
1412, 13ax-mp 5 . . . . . . 7  |-  S  e.  BndLinOp
15 bdopf 25281 . . . . . . 7  |-  ( S  e.  BndLinOp  ->  S : ~H --> ~H )
1614, 15ax-mp 5 . . . . . 6  |-  S : ~H
--> ~H
17 unierr.4 . . . . . . . 8  |-  T  e. 
UniOp
18 unopbd 25434 . . . . . . . 8  |-  ( T  e.  UniOp  ->  T  e.  BndLinOp )
1917, 18ax-mp 5 . . . . . . 7  |-  T  e.  BndLinOp
20 bdopf 25281 . . . . . . 7  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
2119, 20ax-mp 5 . . . . . 6  |-  T : ~H
--> ~H
2216, 21hocofi 25185 . . . . 5  |-  ( S  o.  T ) : ~H --> ~H
2311, 22hosubcli 25188 . . . 4  |-  ( ( F  o.  G )  -op  ( S  o.  T ) ) : ~H --> ~H
24 nmop0h 25410 . . . 4  |-  ( ( ~H  =  0H  /\  ( ( F  o.  G )  -op  ( S  o.  T )
) : ~H --> ~H )  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T
) ) )  =  0 )
2523, 24mpan2 671 . . 3  |-  ( ~H  =  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  =  0 )
26 0le0 10426 . . . . 5  |-  0  <_  0
27 00id 9559 . . . . 5  |-  ( 0  +  0 )  =  0
2826, 27breqtrri 4332 . . . 4  |-  0  <_  ( 0  +  0 )
295, 16hosubcli 25188 . . . . . 6  |-  ( F  -op  S ) : ~H --> ~H
30 nmop0h 25410 . . . . . 6  |-  ( ( ~H  =  0H  /\  ( F  -op  S ) : ~H --> ~H )  ->  ( normop `  ( F  -op  S ) )  =  0 )
3129, 30mpan2 671 . . . . 5  |-  ( ~H  =  0H  ->  ( normop `  ( F  -op  S
) )  =  0 )
3210, 21hosubcli 25188 . . . . . 6  |-  ( G  -op  T ) : ~H --> ~H
33 nmop0h 25410 . . . . . 6  |-  ( ( ~H  =  0H  /\  ( G  -op  T ) : ~H --> ~H )  ->  ( normop `  ( G  -op  T ) )  =  0 )
3432, 33mpan2 671 . . . . 5  |-  ( ~H  =  0H  ->  ( normop `  ( G  -op  T
) )  =  0 )
3531, 34oveq12d 6124 . . . 4  |-  ( ~H  =  0H  ->  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )  =  ( 0  +  0 ) )
3628, 35syl5breqr 4343 . . 3  |-  ( ~H  =  0H  ->  0  <_  ( ( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
3725, 36eqbrtrd 4327 . 2  |-  ( ~H  =  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
3816, 10hocofi 25185 . . . . . 6  |-  ( S  o.  G ) : ~H --> ~H
3911, 38, 22honpncani 25246 . . . . 5  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) )  =  ( ( F  o.  G
)  -op  ( S  o.  T ) )
4039fveq2i 5709 . . . 4  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  =  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )
413, 8bdopcoi 25517 . . . . . . 7  |-  ( F  o.  G )  e.  BndLinOp
4214, 8bdopcoi 25517 . . . . . . 7  |-  ( S  o.  G )  e.  BndLinOp
4341, 42bdophdi 25516 . . . . . 6  |-  ( ( F  o.  G )  -op  ( S  o.  G ) )  e.  BndLinOp
4414, 19bdopcoi 25517 . . . . . . 7  |-  ( S  o.  T )  e.  BndLinOp
4542, 44bdophdi 25516 . . . . . 6  |-  ( ( S  o.  G )  -op  ( S  o.  T ) )  e.  BndLinOp
4643, 45nmoptrii 25513 . . . . 5  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  <_  ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  +  (
normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )
475, 16, 10hocsubdiri 25199 . . . . . . . 8  |-  ( ( F  -op  S )  o.  G )  =  ( ( F  o.  G )  -op  ( S  o.  G )
)
4847fveq2i 5709 . . . . . . 7  |-  ( normop `  ( ( F  -op  S )  o.  G ) )  =  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )
493, 14bdophdi 25516 . . . . . . . 8  |-  ( F  -op  S )  e.  BndLinOp
5049, 8nmopcoi 25514 . . . . . . 7  |-  ( normop `  ( ( F  -op  S )  o.  G ) )  <_  ( ( normop `  ( F  -op  S
) )  x.  ( normop `  G ) )
5148, 50eqbrtrri 4328 . . . . . 6  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  <_  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)
52 bdopln 25280 . . . . . . . . . 10  |-  ( S  e.  BndLinOp  ->  S  e.  LinOp )
5314, 52ax-mp 5 . . . . . . . . 9  |-  S  e. 
LinOp
5453, 10, 21hoddii 25408 . . . . . . . 8  |-  ( S  o.  ( G  -op  T ) )  =  ( ( S  o.  G
)  -op  ( S  o.  T ) )
5554fveq2i 5709 . . . . . . 7  |-  ( normop `  ( S  o.  ( G  -op  T ) ) )  =  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )
568, 19bdophdi 25516 . . . . . . . 8  |-  ( G  -op  T )  e.  BndLinOp
5714, 56nmopcoi 25514 . . . . . . 7  |-  ( normop `  ( S  o.  ( G  -op  T ) ) )  <_  ( ( normop `  S )  x.  ( normop `  ( G  -op  T
) ) )
5855, 57eqbrtrri 4328 . . . . . 6  |-  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )
59 nmopre 25289 . . . . . . . 8  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  e.  BndLinOp 
->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  e.  RR )
6043, 59ax-mp 5 . . . . . . 7  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  e.  RR
61 nmopre 25289 . . . . . . . 8  |-  ( ( ( S  o.  G
)  -op  ( S  o.  T ) )  e.  BndLinOp 
->  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) )  e.  RR )
6245, 61ax-mp 5 . . . . . . 7  |-  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  e.  RR
63 nmopre 25289 . . . . . . . . 9  |-  ( ( F  -op  S )  e.  BndLinOp  ->  ( normop `  ( F  -op  S ) )  e.  RR )
6449, 63ax-mp 5 . . . . . . . 8  |-  ( normop `  ( F  -op  S
) )  e.  RR
65 nmopre 25289 . . . . . . . . 9  |-  ( G  e.  BndLinOp  ->  ( normop `  G
)  e.  RR )
668, 65ax-mp 5 . . . . . . . 8  |-  ( normop `  G )  e.  RR
6764, 66remulcli 9415 . . . . . . 7  |-  ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  e.  RR
68 nmopre 25289 . . . . . . . . 9  |-  ( S  e.  BndLinOp  ->  ( normop `  S
)  e.  RR )
6914, 68ax-mp 5 . . . . . . . 8  |-  ( normop `  S )  e.  RR
70 nmopre 25289 . . . . . . . . 9  |-  ( ( G  -op  T )  e.  BndLinOp  ->  ( normop `  ( G  -op  T ) )  e.  RR )
7156, 70ax-mp 5 . . . . . . . 8  |-  ( normop `  ( G  -op  T
) )  e.  RR
7269, 71remulcli 9415 . . . . . . 7  |-  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  e.  RR
7360, 62, 67, 72le2addi 9918 . . . . . 6  |-  ( ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  <_ 
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  /\  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  ->  ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  +  (
normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )
7451, 58, 73mp2an 672 . . . . 5  |-  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) )
7543, 45bdophsi 25515 . . . . . . 7  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) )  e.  BndLinOp
76 nmopre 25289 . . . . . . 7  |-  ( ( ( ( F  o.  G )  -op  ( S  o.  G )
)  +op  ( ( S  o.  G )  -op  ( S  o.  T
) ) )  e.  BndLinOp 
->  ( normop `  ( (
( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) ) )  e.  RR )
7775, 76ax-mp 5 . . . . . 6  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  e.  RR
7860, 62readdcli 9414 . . . . . 6  |-  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  e.  RR
7967, 72readdcli 9414 . . . . . 6  |-  ( ( ( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  +  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  e.  RR
8077, 78, 79letri 9518 . . . . 5  |-  ( ( ( normop `  ( (
( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) ) )  <_ 
( ( normop `  (
( F  o.  G
)  -op  ( S  o.  G ) ) )  +  ( normop `  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  /\  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )  ->  ( normop `  (
( ( F  o.  G )  -op  ( S  o.  G )
)  +op  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )
8146, 74, 80mp2an 672 . . . 4  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  <_  ( (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  +  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )
8240, 81eqbrtrri 4328 . . 3  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  +  ( ( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )
83 nmopun 25433 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  G  e.  UniOp )  -> 
( normop `  G )  =  1 )
846, 83mpan2 671 . . . . . 6  |-  ( ~H  =/=  0H  ->  ( normop `  G )  =  1 )
8584oveq2d 6122 . . . . 5  |-  ( ~H  =/=  0H  ->  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  =  ( (
normop `  ( F  -op  S ) )  x.  1 ) )
8664recni 9413 . . . . . 6  |-  ( normop `  ( F  -op  S
) )  e.  CC
8786mulid1i 9403 . . . . 5  |-  ( (
normop `  ( F  -op  S ) )  x.  1 )  =  ( normop `  ( F  -op  S
) )
8885, 87syl6eq 2491 . . . 4  |-  ( ~H  =/=  0H  ->  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  =  ( normop `  ( F  -op  S
) ) )
89 nmopun 25433 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  S  e.  UniOp )  -> 
( normop `  S )  =  1 )
9012, 89mpan2 671 . . . . . 6  |-  ( ~H  =/=  0H  ->  ( normop `  S )  =  1 )
9190oveq1d 6121 . . . . 5  |-  ( ~H  =/=  0H  ->  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  =  ( 1  x.  ( normop `  ( G  -op  T ) ) ) )
9271recni 9413 . . . . . 6  |-  ( normop `  ( G  -op  T
) )  e.  CC
9392mulid2i 9404 . . . . 5  |-  ( 1  x.  ( normop `  ( G  -op  T ) ) )  =  ( normop `  ( G  -op  T
) )
9491, 93syl6eq 2491 . . . 4  |-  ( ~H  =/=  0H  ->  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  =  ( normop `  ( G  -op  T ) ) )
9588, 94oveq12d 6124 . . 3  |-  ( ~H  =/=  0H  ->  (
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  +  ( ( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  =  ( (
normop `  ( F  -op  S ) )  +  (
normop `  ( G  -op  T ) ) ) )
9682, 95syl5breq 4342 . 2  |-  ( ~H  =/=  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
9737, 96pm2.61ine 2702 1  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756    =/= wne 2620   class class class wbr 4307    o. ccom 4859   -->wf 5429   ` cfv 5433  (class class class)co 6106   RRcr 9296   0cc0 9297   1c1 9298    + caddc 9300    x. cmul 9302    <_ cle 9434   ~Hchil 24336   0Hc0h 24352    +op chos 24355    -op chod 24357   normopcnop 24362   LinOpclo 24364   BndLinOpcbo 24365   UniOpcuo 24366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387  ax-inf2 7862  ax-cc 8619  ax-cnex 9353  ax-resscn 9354  ax-1cn 9355  ax-icn 9356  ax-addcl 9357  ax-addrcl 9358  ax-mulcl 9359  ax-mulrcl 9360  ax-mulcom 9361  ax-addass 9362  ax-mulass 9363  ax-distr 9364  ax-i2m1 9365  ax-1ne0 9366  ax-1rid 9367  ax-rnegex 9368  ax-rrecex 9369  ax-cnre 9370  ax-pre-lttri 9371  ax-pre-lttrn 9372  ax-pre-ltadd 9373  ax-pre-mulgt0 9374  ax-pre-sup 9375  ax-addf 9376  ax-mulf 9377  ax-hilex 24416  ax-hfvadd 24417  ax-hvcom 24418  ax-hvass 24419  ax-hv0cl 24420  ax-hvaddid 24421  ax-hfvmul 24422  ax-hvmulid 24423  ax-hvmulass 24424  ax-hvdistr1 24425  ax-hvdistr2 24426  ax-hvmul0 24427  ax-hfi 24496  ax-his1 24499  ax-his2 24500  ax-his3 24501  ax-his4 24502  ax-hcompl 24619
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rmo 2738  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-pss 3359  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-tp 3897  df-op 3899  df-uni 4107  df-int 4144  df-iun 4188  df-iin 4189  df-br 4308  df-opab 4366  df-mpt 4367  df-tr 4401  df-eprel 4647  df-id 4651  df-po 4656  df-so 4657  df-fr 4694  df-se 4695  df-we 4696  df-ord 4737  df-on 4738  df-lim 4739  df-suc 4740  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-isom 5442  df-riota 6067  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-of 6335  df-om 6492  df-1st 6592  df-2nd 6593  df-supp 6706  df-recs 6847  df-rdg 6881  df-1o 6935  df-2o 6936  df-oadd 6939  df-omul 6940  df-er 7116  df-map 7231  df-pm 7232  df-ixp 7279  df-en 7326  df-dom 7327  df-sdom 7328  df-fin 7329  df-fsupp 7636  df-fi 7676  df-sup 7706  df-oi 7739  df-card 8124  df-acn 8127  df-cda 8352  df-pnf 9435  df-mnf 9436  df-xr 9437  df-ltxr 9438  df-le 9439  df-sub 9612  df-neg 9613  df-div 10009  df-nn 10338  df-2 10395  df-3 10396  df-4 10397  df-5 10398  df-6 10399  df-7 10400  df-8 10401  df-9 10402  df-10 10403  df-n0 10595  df-z 10662  df-dec 10771  df-uz 10877  df-q 10969  df-rp 11007  df-xneg 11104  df-xadd 11105  df-xmul 11106  df-ioo 11319  df-ico 11321  df-icc 11322  df-fz 11453  df-fzo 11564  df-fl 11657  df-seq 11822  df-exp 11881  df-hash 12119  df-cj 12603  df-re 12604  df-im 12605  df-sqr 12739  df-abs 12740  df-clim 12981  df-rlim 12982  df-sum 13179  df-struct 14191  df-ndx 14192  df-slot 14193  df-base 14194  df-sets 14195  df-ress 14196  df-plusg 14266  df-mulr 14267  df-starv 14268  df-sca 14269  df-vsca 14270  df-ip 14271  df-tset 14272  df-ple 14273  df-ds 14275  df-unif 14276  df-hom 14277  df-cco 14278  df-rest 14376  df-topn 14377  df-0g 14395  df-gsum 14396  df-topgen 14397  df-pt 14398  df-prds 14401  df-xrs 14455  df-qtop 14460  df-imas 14461  df-xps 14463  df-mre 14539  df-mrc 14540  df-acs 14542  df-mnd 15430  df-submnd 15480  df-mulg 15563  df-cntz 15850  df-cmn 16294  df-psmet 17824  df-xmet 17825  df-met 17826  df-bl 17827  df-mopn 17828  df-fbas 17829  df-fg 17830  df-cnfld 17834  df-top 18518  df-bases 18520  df-topon 18521  df-topsp 18522  df-cld 18638  df-ntr 18639  df-cls 18640  df-nei 18717  df-cn 18846  df-cnp 18847  df-lm 18848  df-haus 18934  df-tx 19150  df-hmeo 19343  df-fil 19434  df-fm 19526  df-flim 19527  df-flf 19528  df-xms 19910  df-ms 19911  df-tms 19912  df-cfil 20781  df-cau 20782  df-cmet 20783  df-grpo 23693  df-gid 23694  df-ginv 23695  df-gdiv 23696  df-ablo 23784  df-subgo 23804  df-vc 23939  df-nv 23985  df-va 23988  df-ba 23989  df-sm 23990  df-0v 23991  df-vs 23992  df-nmcv 23993  df-ims 23994  df-dip 24111  df-ssp 24135  df-lno 24159  df-nmoo 24160  df-0o 24162  df-ph 24228  df-cbn 24279  df-hnorm 24385  df-hba 24386  df-hvsub 24388  df-hlim 24389  df-hcau 24390  df-sh 24624  df-ch 24639  df-oc 24670  df-ch0 24671  df-shs 24726  df-pjh 24813  df-hosum 25149  df-homul 25150  df-hodif 25151  df-h0op 25167  df-nmop 25258  df-lnop 25260  df-bdop 25261  df-unop 25262  df-hmop 25263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator