MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unielrel Structured version   Unicode version

Theorem unielrel 5532
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )

Proof of Theorem unielrel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5105 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  E. x E. y  A  =  <. x ,  y >.
)
2 simpr 461 . 2  |-  ( ( Rel  R  /\  A  e.  R )  ->  A  e.  R )
3 vex 3116 . . . . . 6  |-  x  e. 
_V
4 vex 3116 . . . . . 6  |-  y  e. 
_V
53, 4uniopel 4751 . . . . 5  |-  ( <.
x ,  y >.  e.  R  ->  U. <. x ,  y >.  e.  U. R )
65a1i 11 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  R  ->  U. <. x ,  y
>.  e.  U. R ) )
7 eleq1 2539 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  <->  <. x ,  y
>.  e.  R ) )
8 unieq 4253 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  U. A  =  U. <. x ,  y >.
)
98eleq1d 2536 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( U. A  e.  U. R  <->  U. <. x ,  y >.  e.  U. R ) )
106, 7, 93imtr4d 268 . . 3  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
1110exlimivv 1699 . 2  |-  ( E. x E. y  A  =  <. x ,  y
>.  ->  ( A  e.  R  ->  U. A  e. 
U. R ) )
121, 2, 11sylc 60 1  |-  ( ( Rel  R  /\  A  e.  R )  ->  U. A  e.  U. R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   <.cop 4033   U.cuni 4245   Rel wrel 5004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rex 2820  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-opab 4506  df-xp 5005  df-rel 5006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator