MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif Structured version   Visualization version   Unicode version

Theorem unidif 4234
Description: If the difference  A  \  B contains the largest members of  A, then the union of the difference is the union of  A. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. ( A  \  B )  =  U. A )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 4233 . . 3  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. A  C_  U. ( A  \  B ) )
2 difss 3562 . . . 4  |-  ( A 
\  B )  C_  A
32unissi 4224 . . 3  |-  U. ( A  \  B )  C_  U. A
41, 3jctil 540 . 2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  ( U. ( A  \  B )  C_  U. A  /\  U. A  C_ 
U. ( A  \  B ) ) )
5 eqss 3449 . 2  |-  ( U. ( A  \  B )  =  U. A  <->  ( U. ( A  \  B ) 
C_  U. A  /\  U. A  C_  U. ( A 
\  B ) ) )
64, 5sylibr 216 1  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) x  C_  y  ->  U. ( A  \  B )  =  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446   A.wral 2739   E.wrex 2740    \ cdif 3403    C_ wss 3406   U.cuni 4201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ral 2744  df-rex 2745  df-v 3049  df-dif 3409  df-in 3413  df-ss 3420  df-uni 4202
This theorem is referenced by:  ordunidif  5474
  Copyright terms: Public domain W3C validator