MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfi Structured version   Unicode version

Theorem unfi 7787
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.)
Assertion
Ref Expression
unfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )

Proof of Theorem unfi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 7751 . 2  |-  ( B  e.  Fin  ->  ( B  \  A )  e. 
Fin )
2 reeanv 3029 . . . 4  |-  ( E. x  e.  om  E. y  e.  om  ( A  ~~  x  /\  ( B  \  A )  ~~  y )  <->  ( E. x  e.  om  A  ~~  x  /\  E. y  e. 
om  ( B  \  A )  ~~  y
) )
3 isfi 7539 . . . . 5  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
4 isfi 7539 . . . . 5  |-  ( ( B  \  A )  e.  Fin  <->  E. y  e.  om  ( B  \  A )  ~~  y
)
53, 4anbi12i 697 . . . 4  |-  ( ( A  e.  Fin  /\  ( B  \  A )  e.  Fin )  <->  ( E. x  e.  om  A  ~~  x  /\  E. y  e. 
om  ( B  \  A )  ~~  y
) )
62, 5bitr4i 252 . . 3  |-  ( E. x  e.  om  E. y  e.  om  ( A  ~~  x  /\  ( B  \  A )  ~~  y )  <->  ( A  e.  Fin  /\  ( B 
\  A )  e. 
Fin ) )
7 nnacl 7260 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  +o  y
)  e.  om )
8 unfilem3 7786 . . . . . . 7  |-  ( ( x  e.  om  /\  y  e.  om )  ->  y  ~~  ( ( x  +o  y ) 
\  x ) )
9 entr 7567 . . . . . . . 8  |-  ( ( ( B  \  A
)  ~~  y  /\  y  ~~  ( ( x  +o  y )  \  x ) )  -> 
( B  \  A
)  ~~  ( (
x  +o  y ) 
\  x ) )
109expcom 435 . . . . . . 7  |-  ( y 
~~  ( ( x  +o  y )  \  x )  ->  (
( B  \  A
)  ~~  y  ->  ( B  \  A ) 
~~  ( ( x  +o  y )  \  x ) ) )
118, 10syl 16 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( ( B  \  A )  ~~  y  ->  ( B  \  A
)  ~~  ( (
x  +o  y ) 
\  x ) ) )
12 disjdif 3899 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
13 disjdif 3899 . . . . . . . 8  |-  ( x  i^i  ( ( x  +o  y )  \  x ) )  =  (/)
14 unen 7598 . . . . . . . 8  |-  ( ( ( A  ~~  x  /\  ( B  \  A
)  ~~  ( (
x  +o  y ) 
\  x ) )  /\  ( ( A  i^i  ( B  \  A ) )  =  (/)  /\  ( x  i^i  ( ( x  +o  y )  \  x
) )  =  (/) ) )  ->  ( A  u.  ( B  \  A ) )  ~~  ( x  u.  (
( x  +o  y
)  \  x )
) )
1512, 13, 14mpanr12 685 . . . . . . 7  |-  ( ( A  ~~  x  /\  ( B  \  A ) 
~~  ( ( x  +o  y )  \  x ) )  -> 
( A  u.  ( B  \  A ) ) 
~~  ( x  u.  ( ( x  +o  y )  \  x
) ) )
16 undif2 3903 . . . . . . . . 9  |-  ( A  u.  ( B  \  A ) )  =  ( A  u.  B
)
1716a1i 11 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( A  u.  ( B  \  A ) )  =  ( A  u.  B ) )
18 nnaword1 7278 . . . . . . . . 9  |-  ( ( x  e.  om  /\  y  e.  om )  ->  x  C_  ( x  +o  y ) )
19 undif 3907 . . . . . . . . 9  |-  ( x 
C_  ( x  +o  y )  <->  ( x  u.  ( ( x  +o  y )  \  x
) )  =  ( x  +o  y ) )
2018, 19sylib 196 . . . . . . . 8  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  u.  (
( x  +o  y
)  \  x )
)  =  ( x  +o  y ) )
2117, 20breq12d 4460 . . . . . . 7  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( ( A  u.  ( B  \  A ) )  ~~  ( x  u.  ( ( x  +o  y )  \  x ) )  <->  ( A  u.  B )  ~~  (
x  +o  y ) ) )
2215, 21syl5ib 219 . . . . . 6  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( ( A  ~~  x  /\  ( B  \  A )  ~~  (
( x  +o  y
)  \  x )
)  ->  ( A  u.  B )  ~~  (
x  +o  y ) ) )
2311, 22sylan2d 482 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( ( A  ~~  x  /\  ( B  \  A )  ~~  y
)  ->  ( A  u.  B )  ~~  (
x  +o  y ) ) )
24 breq2 4451 . . . . . . 7  |-  ( z  =  ( x  +o  y )  ->  (
( A  u.  B
)  ~~  z  <->  ( A  u.  B )  ~~  (
x  +o  y ) ) )
2524rspcev 3214 . . . . . 6  |-  ( ( ( x  +o  y
)  e.  om  /\  ( A  u.  B
)  ~~  ( x  +o  y ) )  ->  E. z  e.  om  ( A  u.  B
)  ~~  z )
26 isfi 7539 . . . . . 6  |-  ( ( A  u.  B )  e.  Fin  <->  E. z  e.  om  ( A  u.  B )  ~~  z
)
2725, 26sylibr 212 . . . . 5  |-  ( ( ( x  +o  y
)  e.  om  /\  ( A  u.  B
)  ~~  ( x  +o  y ) )  -> 
( A  u.  B
)  e.  Fin )
287, 23, 27syl6an 545 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( ( A  ~~  x  /\  ( B  \  A )  ~~  y
)  ->  ( A  u.  B )  e.  Fin ) )
2928rexlimivv 2960 . . 3  |-  ( E. x  e.  om  E. y  e.  om  ( A  ~~  x  /\  ( B  \  A )  ~~  y )  ->  ( A  u.  B )  e.  Fin )
306, 29sylbir 213 . 2  |-  ( ( A  e.  Fin  /\  ( B  \  A )  e.  Fin )  -> 
( A  u.  B
)  e.  Fin )
311, 30sylan2 474 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   class class class wbr 4447  (class class class)co 6284   omcom 6684    +o coa 7127    ~~ cen 7513   Fincfn 7516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520
This theorem is referenced by:  unfi2  7789  difinf  7790  xpfi  7791  prfi  7795  tpfi  7796  fnfi  7798  iunfi  7808  pwfilem  7814  fsuppun  7848  fsuppunfi  7849  ressuppfi  7855  fiin  7882  wemapso2OLD  7977  cantnfp1lem1  8097  cantnfp1lem1OLD  8123  ficardun2  8583  ackbij1lem6  8605  ackbij1lem16  8615  fin23lem28  8720  fin23lem30  8722  isfin1-3  8766  axcclem  8837  hashun  12418  hashunlei  12448  hashmap  12459  hashbclem  12467  hashf1lem1  12470  hashf1lem2  12471  hashf1  12472  fsummsnunz  13532  fsumsplitsnun  13533  incexclem  13611  isumltss  13623  ramub1lem1  14403  fpwipodrs  15651  acsfiindd  15664  symgfisg  16299  gsumzaddlemOLD  16739  gsumzunsnd  16785  gsumunsnfd  16786  dprdfaddOLD  16869  psrbagaddcl  17819  psrbagaddclOLD  17820  mplsubg  17897  mpllss  17898  funsnfsupOLD  18055  dsmmacl  18567  fctop  19299  uncmp  19697  bwth  19704  1stckgenlem  19817  ptbasin  19841  cfinfil  20157  fin1aufil  20196  alexsubALTlem3  20312  tmdgsum  20357  tsmsfbas  20389  tsmsgsum  20400  tsmsgsumOLD  20403  tsmsresOLD  20408  tsmsres  20409  tsmsxplem1  20418  prdsmet  20636  prdsbl  20757  icccmplem2  21091  rrxmval  21595  rrxmet  21598  rrxdstprj1  21599  ovolfiniun  21675  volfiniun  21720  fta1glem2  22330  fta1lem  22465  aannenlem2  22487  aalioulem2  22491  dchrfi  23286  usgrafilem2  24116  vdgrfiun  24606  konigsberg  24691  ffsrn  27252  eulerpartlemt  27978  ballotlemgun  28131  itg2addnclem2  29672  ftc1anclem7  29701  ftc1anc  29703  locfincmp  29804  comppfsc  29807  prdsbnd  29920  elrfi  30258  mzpcompact2lem  30316  eldioph2  30327  lsmfgcl  30652  fiuneneq  30787  fourierdlem50  31485  fourierdlem51  31486  fourierdlem54  31489  fourierdlem76  31511  fourierdlem80  31515  fourierdlem102  31537  fourierdlem103  31538  fourierdlem104  31539  fourierdlem114  31549  fsummmodsnunz  31843  usgfislem2  31940  usgfisALTlem2  31944  mndpsuppfi  32067  pclfinN  34714
  Copyright terms: Public domain W3C validator