Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj1 Structured version   Unicode version

Theorem undisj1 3881
 Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1

Proof of Theorem undisj1
StepHypRef Expression
1 un00 3865 . 2
2 indir 3753 . . 3
32eqeq1i 2464 . 2
41, 3bitr4i 252 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   wceq 1395   cun 3469   cin 3470  c0 3793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794 This theorem is referenced by:  funtp  5646  f1oun2prg  12876
 Copyright terms: Public domain W3C validator