MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Unicode version

Theorem undifabs 3878
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs  |-  ( A  u.  ( A  \  B ) )  =  A

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 3740 . 2  |-  ( A  u.  ( A  \  B ) )  =  ( ( A  u.  A )  \  ( B  \  A ) )
2 unidm 3615 . . 3  |-  ( A  u.  A )  =  A
32difeq1i 3585 . 2  |-  ( ( A  u.  A ) 
\  ( B  \  A ) )  =  ( A  \  ( B  \  A ) )
4 difdif 3597 . 2  |-  ( A 
\  ( B  \  A ) )  =  A
51, 3, 43eqtri 2462 1  |-  ( A  u.  ( A  \  B ) )  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    \ cdif 3439    u. cun 3440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447
This theorem is referenced by:  dfif5  3931  indifundif  27988
  Copyright terms: Public domain W3C validator