MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifabs Structured version   Unicode version

Theorem undifabs 3904
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs  |-  ( A  u.  ( A  \  B ) )  =  A

Proof of Theorem undifabs
StepHypRef Expression
1 undif3 3759 . 2  |-  ( A  u.  ( A  \  B ) )  =  ( ( A  u.  A )  \  ( B  \  A ) )
2 unidm 3647 . . 3  |-  ( A  u.  A )  =  A
32difeq1i 3618 . 2  |-  ( ( A  u.  A ) 
\  ( B  \  A ) )  =  ( A  \  ( B  \  A ) )
4 difdif 3630 . 2  |-  ( A 
\  ( B  \  A ) )  =  A
51, 3, 43eqtri 2500 1  |-  ( A  u.  ( A  \  B ) )  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    \ cdif 3473    u. cun 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481
This theorem is referenced by:  dfif5  3955
  Copyright terms: Public domain W3C validator