MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undefne0 Structured version   Unicode version

Theorem undefne0 7034
Description: The undefined value generated from a set is not empty. (Contributed by NM, 3-Sep-2018.)
Assertion
Ref Expression
undefne0  |-  ( S  e.  V  ->  ( Undef `  S )  =/=  (/) )

Proof of Theorem undefne0
StepHypRef Expression
1 undefval 7031 . 2  |-  ( S  e.  V  ->  ( Undef `  S )  =  ~P U. S )
2 pwne0 4595 . . 3  |-  ~P U. S  =/=  (/)
32a1i 11 . 2  |-  ( S  e.  V  ->  ~P U. S  =/=  (/) )
41, 3eqnetrd 2724 1  |-  ( S  e.  V  ->  ( Undef `  S )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1870    =/= wne 2625   (/)c0 3767   ~Pcpw 3985   U.cuni 4222   ` cfv 5601   Undefcund 7027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-iota 5565  df-fun 5603  df-fv 5609  df-undef 7028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator