MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncon Structured version   Unicode version

Theorem uncon 19724
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
uncon  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  ( A  i^i  B )  =/=  (/) )  ->  ( ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) )

Proof of Theorem uncon
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3794 . . 3  |-  ( ( A  i^i  B )  =/=  (/)  <->  E. x  x  e.  ( A  i^i  B
) )
2 uniiun 4378 . . . . . . . . 9  |-  U. { A ,  B }  =  U_ k  e.  { A ,  B }
k
3 simpl1 999 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  J  e.  (TopOn `  X )
)
4 toponmax 19224 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
53, 4syl 16 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  X  e.  J )
6 simpl2l 1049 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  A  C_  X )
75, 6ssexd 4594 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  A  e.  _V )
8 simpl2r 1050 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  B  C_  X )
95, 8ssexd 4594 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  B  e.  _V )
10 uniprg 4259 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  U. { A ,  B }  =  ( A  u.  B )
)
117, 9, 10syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  U. { A ,  B }  =  ( A  u.  B ) )
122, 11syl5eqr 2522 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  U_ k  e.  { A ,  B } k  =  ( A  u.  B ) )
1312oveq2d 6300 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  ( Jt  U_ k  e.  { A ,  B } k )  =  ( Jt  ( A  u.  B ) ) )
14 vex 3116 . . . . . . . . . 10  |-  k  e. 
_V
1514elpr 4045 . . . . . . . . 9  |-  ( k  e.  { A ,  B }  <->  ( k  =  A  \/  k  =  B ) )
16 simpl2 1000 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  ( A  C_  X  /\  B  C_  X ) )
17 sseq1 3525 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
k  C_  X  <->  A  C_  X
) )
1817biimprd 223 . . . . . . . . . . 11  |-  ( k  =  A  ->  ( A  C_  X  ->  k  C_  X ) )
19 sseq1 3525 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
k  C_  X  <->  B  C_  X
) )
2019biimprd 223 . . . . . . . . . . 11  |-  ( k  =  B  ->  ( B  C_  X  ->  k  C_  X ) )
2118, 20jaoa 510 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( A  C_  X  /\  B  C_  X
)  ->  k  C_  X ) )
2216, 21mpan9 469 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  (
k  =  A  \/  k  =  B )
)  ->  k  C_  X )
2315, 22sylan2b 475 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  k  e.  { A ,  B } )  ->  k  C_  X )
24 simpl3 1001 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  x  e.  ( A  i^i  B
) )
25 elin 3687 . . . . . . . . . . 11  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2624, 25sylib 196 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  (
x  e.  A  /\  x  e.  B )
)
27 eleq2 2540 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
x  e.  k  <->  x  e.  A ) )
2827biimprd 223 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
x  e.  A  ->  x  e.  k )
)
29 eleq2 2540 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
x  e.  k  <->  x  e.  B ) )
3029biimprd 223 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
x  e.  B  ->  x  e.  k )
)
3128, 30jaoa 510 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( x  e.  A  /\  x  e.  B )  ->  x  e.  k ) )
3226, 31mpan9 469 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  (
k  =  A  \/  k  =  B )
)  ->  x  e.  k )
3315, 32sylan2b 475 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  k  e.  { A ,  B } )  ->  x  e.  k )
34 simpr 461 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )
35 oveq2 6292 . . . . . . . . . . . . 13  |-  ( k  =  A  ->  ( Jt  k )  =  ( Jt  A ) )
3635eleq1d 2536 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
( Jt  k )  e. 
Con 
<->  ( Jt  A )  e.  Con ) )
3736biimprd 223 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( Jt  A )  e.  Con  ->  ( Jt  k )  e. 
Con ) )
38 oveq2 6292 . . . . . . . . . . . . 13  |-  ( k  =  B  ->  ( Jt  k )  =  ( Jt  B ) )
3938eleq1d 2536 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
( Jt  k )  e. 
Con 
<->  ( Jt  B )  e.  Con ) )
4039biimprd 223 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( Jt  B )  e.  Con  ->  ( Jt  k )  e. 
Con ) )
4137, 40jaoa 510 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  k )  e.  Con ) )
4234, 41mpan9 469 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  (
k  =  A  \/  k  =  B )
)  ->  ( Jt  k
)  e.  Con )
4315, 42sylan2b 475 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  /\  k  e.  { A ,  B } )  ->  ( Jt  k )  e.  Con )
443, 23, 33, 43iuncon 19723 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  ( Jt  U_ k  e.  { A ,  B } k )  e.  Con )
4513, 44eqeltrrd 2556 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con ) )  ->  ( Jt  ( A  u.  B
) )  e.  Con )
4645ex 434 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  ->  (
( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) )
47463expia 1198 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( x  e.  ( A  i^i  B )  ->  ( ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) ) )
4847exlimdv 1700 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( E. x  x  e.  ( A  i^i  B )  ->  ( (
( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) ) )
491, 48syl5bi 217 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( ( A  i^i  B )  =/=  (/)  ->  (
( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) ) )
50493impia 1193 1  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  ( A  i^i  B )  =/=  (/) )  ->  ( ( ( Jt  A )  e.  Con  /\  ( Jt  B )  e.  Con )  ->  ( Jt  ( A  u.  B ) )  e.  Con ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {cpr 4029   U.cuni 4245   U_ciun 4325   ` cfv 5588  (class class class)co 6284   ↾t crest 14676  TopOnctopon 19190   Conccon 19706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-rest 14678  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314  df-con 19707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator