MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncmp Structured version   Visualization version   Unicode version

Theorem uncmp 20418
Description: The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.)
Hypothesis
Ref Expression
uncmp.1  |-  X  = 
U. J
Assertion
Ref Expression
uncmp  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Comp )

Proof of Theorem uncmp
Dummy variables  c 
d  m  n  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 760 . 2  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Top )
2 simpll 760 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  J  e.  Top )
3 ssun1 3597 . . . . . . . . . 10  |-  S  C_  ( S  u.  T
)
4 sseq2 3454 . . . . . . . . . 10  |-  ( X  =  ( S  u.  T )  ->  ( S  C_  X  <->  S  C_  ( S  u.  T )
) )
53, 4mpbiri 237 . . . . . . . . 9  |-  ( X  =  ( S  u.  T )  ->  S  C_  X )
65ad2antlr 733 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  S  C_  X
)
7 uncmp.1 . . . . . . . . 9  |-  X  = 
U. J
87cmpsub 20415 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( Jt  S )  e.  Comp  <->  A. m  e.  ~P  J ( S  C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n ) ) )
92, 6, 8syl2anc 667 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  S )  e.  Comp  <->  A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n ) ) )
10 simprr 766 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  X  =  U. c )
116, 10sseqtrd 3468 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  S  C_  U. c
)
12 unieq 4206 . . . . . . . . . . . 12  |-  ( m  =  c  ->  U. m  =  U. c )
1312sseq2d 3460 . . . . . . . . . . 11  |-  ( m  =  c  ->  ( S  C_  U. m  <->  S  C_  U. c
) )
14 pweq 3954 . . . . . . . . . . . . 13  |-  ( m  =  c  ->  ~P m  =  ~P c
)
1514ineq1d 3633 . . . . . . . . . . . 12  |-  ( m  =  c  ->  ( ~P m  i^i  Fin )  =  ( ~P c  i^i  Fin ) )
1615rexeqdv 2994 . . . . . . . . . . 11  |-  ( m  =  c  ->  ( E. n  e.  ( ~P m  i^i  Fin ) S  C_  U. n  <->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) )
1713, 16imbi12d 322 . . . . . . . . . 10  |-  ( m  =  c  ->  (
( S  C_  U. m  ->  E. n  e.  ( ~P m  i^i  Fin ) S  C_  U. n
)  <->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) ) )
1817rspcv 3146 . . . . . . . . 9  |-  ( c  e.  ~P J  -> 
( A. m  e. 
~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) ) )
1918ad2antrl 734 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) ) )
2011, 19mpid 42 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) )
219, 20sylbid 219 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  S )  e.  Comp  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) )
22 ssun2 3598 . . . . . . . . . 10  |-  T  C_  ( S  u.  T
)
23 sseq2 3454 . . . . . . . . . 10  |-  ( X  =  ( S  u.  T )  ->  ( T  C_  X  <->  T  C_  ( S  u.  T )
) )
2422, 23mpbiri 237 . . . . . . . . 9  |-  ( X  =  ( S  u.  T )  ->  T  C_  X )
2524ad2antlr 733 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  T  C_  X
)
267cmpsub 20415 . . . . . . . 8  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( Jt  T )  e.  Comp  <->  A. r  e.  ~P  J ( T  C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s ) ) )
272, 25, 26syl2anc 667 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  T )  e.  Comp  <->  A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s ) ) )
2825, 10sseqtrd 3468 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  T  C_  U. c
)
29 unieq 4206 . . . . . . . . . . . 12  |-  ( r  =  c  ->  U. r  =  U. c )
3029sseq2d 3460 . . . . . . . . . . 11  |-  ( r  =  c  ->  ( T  C_  U. r  <->  T  C_  U. c
) )
31 pweq 3954 . . . . . . . . . . . . 13  |-  ( r  =  c  ->  ~P r  =  ~P c
)
3231ineq1d 3633 . . . . . . . . . . . 12  |-  ( r  =  c  ->  ( ~P r  i^i  Fin )  =  ( ~P c  i^i  Fin ) )
3332rexeqdv 2994 . . . . . . . . . . 11  |-  ( r  =  c  ->  ( E. s  e.  ( ~P r  i^i  Fin ) T  C_  U. s  <->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
3430, 33imbi12d 322 . . . . . . . . . 10  |-  ( r  =  c  ->  (
( T  C_  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) T  C_  U. s
)  <->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) ) )
3534rspcv 3146 . . . . . . . . 9  |-  ( c  e.  ~P J  -> 
( A. r  e. 
~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) ) )
3635ad2antrl 734 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) ) )
3728, 36mpid 42 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
3827, 37sylbid 219 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  T )  e.  Comp  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) )
39 reeanv 2958 . . . . . . 7  |-  ( E. n  e.  ( ~P c  i^i  Fin ) E. s  e.  ( ~P c  i^i  Fin )
( S  C_  U. n  /\  T  C_  U. s
)  <->  ( E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n  /\  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
40 elin 3617 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ~P c  i^i  Fin )  <->  ( n  e.  ~P c  /\  n  e.  Fin ) )
4140simplbi 462 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  e.  ~P c )
4241elpwid 3961 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  C_  c )
43 elin 3617 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  ( ~P c  i^i  Fin )  <->  ( s  e.  ~P c  /\  s  e.  Fin ) )
4443simplbi 462 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  e.  ~P c )
4544elpwid 3961 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  C_  c )
4642, 45anim12i 570 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i  Fin )
)  ->  ( n  C_  c  /\  s  C_  c ) )
4746ad2antrl 734 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  C_  c  /\  s  C_  c ) )
48 unss 3608 . . . . . . . . . . . . 13  |-  ( ( n  C_  c  /\  s  C_  c )  <->  ( n  u.  s )  C_  c
)
4947, 48sylib 200 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  C_  c )
5040simprbi 466 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  e.  Fin )
5143simprbi 466 . . . . . . . . . . . . . 14  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  e.  Fin )
52 unfi 7838 . . . . . . . . . . . . . 14  |-  ( ( n  e.  Fin  /\  s  e.  Fin )  ->  ( n  u.  s
)  e.  Fin )
5350, 51, 52syl2an 480 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i  Fin )
)  ->  ( n  u.  s )  e.  Fin )
5453ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  e.  Fin )
5549, 54jca 535 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( ( n  u.  s )  C_  c  /\  ( n  u.  s
)  e.  Fin )
)
56 elin 3617 . . . . . . . . . . . 12  |-  ( ( n  u.  s )  e.  ( ~P c  i^i  Fin )  <->  ( (
n  u.  s )  e.  ~P c  /\  ( n  u.  s
)  e.  Fin )
)
57 vex 3048 . . . . . . . . . . . . . 14  |-  c  e. 
_V
5857elpw2 4567 . . . . . . . . . . . . 13  |-  ( ( n  u.  s )  e.  ~P c  <->  ( n  u.  s )  C_  c
)
5958anbi1i 701 . . . . . . . . . . . 12  |-  ( ( ( n  u.  s
)  e.  ~P c  /\  ( n  u.  s
)  e.  Fin )  <->  ( ( n  u.  s
)  C_  c  /\  ( n  u.  s
)  e.  Fin )
)
6056, 59bitr2i 254 . . . . . . . . . . 11  |-  ( ( ( n  u.  s
)  C_  c  /\  ( n  u.  s
)  e.  Fin )  <->  ( n  u.  s )  e.  ( ~P c  i^i  Fin ) )
6155, 60sylib 200 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  e.  ( ~P c  i^i  Fin )
)
62 simpllr 769 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  =  ( S  u.  T ) )
63 ssun3 3599 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  U. n  ->  S  C_  ( U. n  u. 
U. s ) )
64 ssun4 3600 . . . . . . . . . . . . . . . 16  |-  ( T 
C_  U. s  ->  T  C_  ( U. n  u. 
U. s ) )
6563, 64anim12i 570 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  U. n  /\  T  C_  U. s
)  ->  ( S  C_  ( U. n  u. 
U. s )  /\  T  C_  ( U. n  u.  U. s ) ) )
6665ad2antll 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( S  C_  ( U. n  u.  U. s
)  /\  T  C_  ( U. n  u.  U. s
) ) )
67 unss 3608 . . . . . . . . . . . . . 14  |-  ( ( S  C_  ( U. n  u.  U. s
)  /\  T  C_  ( U. n  u.  U. s
) )  <->  ( S  u.  T )  C_  ( U. n  u.  U. s
) )
6866, 67sylib 200 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( S  u.  T
)  C_  ( U. n  u.  U. s
) )
6962, 68eqsstrd 3466 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  C_  ( U. n  u.  U. s ) )
70 uniun 4217 . . . . . . . . . . . 12  |-  U. (
n  u.  s )  =  ( U. n  u.  U. s )
7169, 70syl6sseqr 3479 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  C_  U. ( n  u.  s ) )
72 elpwi 3960 . . . . . . . . . . . . . . 15  |-  ( c  e.  ~P J  -> 
c  C_  J )
7372adantr 467 . . . . . . . . . . . . . 14  |-  ( ( c  e.  ~P J  /\  X  =  U. c )  ->  c  C_  J )
7473ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
c  C_  J )
7549, 74sstrd 3442 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  C_  J )
76 uniss 4219 . . . . . . . . . . . . 13  |-  ( ( n  u.  s ) 
C_  J  ->  U. (
n  u.  s ) 
C_  U. J )
7776, 7syl6sseqr 3479 . . . . . . . . . . . 12  |-  ( ( n  u.  s ) 
C_  J  ->  U. (
n  u.  s ) 
C_  X )
7875, 77syl 17 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  U. ( n  u.  s
)  C_  X )
7971, 78eqssd 3449 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  =  U. (
n  u.  s ) )
80 unieq 4206 . . . . . . . . . . . 12  |-  ( d  =  ( n  u.  s )  ->  U. d  =  U. ( n  u.  s ) )
8180eqeq2d 2461 . . . . . . . . . . 11  |-  ( d  =  ( n  u.  s )  ->  ( X  =  U. d  <->  X  =  U. ( n  u.  s ) ) )
8281rspcev 3150 . . . . . . . . . 10  |-  ( ( ( n  u.  s
)  e.  ( ~P c  i^i  Fin )  /\  X  =  U. ( n  u.  s
) )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d )
8361, 79, 82syl2anc 667 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)
8483exp32 610 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  -> 
( ( S  C_  U. n  /\  T  C_  U. s )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) )
8584rexlimdvv 2885 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( E. n  e.  ( ~P c  i^i 
Fin ) E. s  e.  ( ~P c  i^i 
Fin ) ( S 
C_  U. n  /\  T  C_ 
U. s )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) )
8639, 85syl5bir 222 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n  /\  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )
8721, 38, 86syl2and 486 . . . . 5  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )
8887impancom 442 . . . 4  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  (
( c  e.  ~P J  /\  X  =  U. c )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) )
8988expd 438 . . 3  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  (
c  e.  ~P J  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
9089ralrimiv 2800 . 2  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) )
917iscmp 20403 . 2  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
921, 90, 91sylanbrc 670 1  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738    u. cun 3402    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198  (class class class)co 6290   Fincfn 7569   ↾t crest 15319   Topctop 19917   Compccmp 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-top 19921  df-bases 19922  df-topon 19923  df-cmp 20402
This theorem is referenced by:  fiuncmp  20419
  Copyright terms: Public domain W3C validator