MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfval Structured version   Unicode version

Theorem uncfval 15350
Description: Value of the uncurry functor, which is the reverse of the curry functor, taking  G : C --> ( D --> E ) to uncurryF  ( G ) : C  X.  D --> E. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g  |-  F  =  ( <" C D E "> uncurryF  G )
uncfval.c  |-  ( ph  ->  D  e.  Cat )
uncfval.d  |-  ( ph  ->  E  e.  Cat )
uncfval.f  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
Assertion
Ref Expression
uncfval  |-  ( ph  ->  F  =  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )

Proof of Theorem uncfval
Dummy variables  f 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . 2  |-  F  =  ( <" C D E "> uncurryF  G )
2 df-uncf 15331 . . . 4  |- uncurryF  =  ( c  e. 
_V ,  f  e. 
_V  |->  ( ( ( c `  1 ) evalF  ( c `  2 ) )  o.func  ( ( f  o.func  ( ( c `  0
)  1stF  ( c `  1
) ) ) ⟨,⟩F  ( ( c ` 
0 )  2ndF  ( c `  1 ) ) ) ) )
32a1i 11 . . 3  |-  ( ph  -> uncurryF  =  ( c  e.  _V ,  f  e.  _V  |->  ( ( ( c `
 1 ) evalF  ( c `
 2 ) )  o.func  ( ( f  o.func  ( ( c `  0
)  1stF  ( c `  1
) ) ) ⟨,⟩F  ( ( c ` 
0 )  2ndF  ( c `  1 ) ) ) ) ) )
4 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
c  =  <" C D E "> )
54fveq1d 5859 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  1
)  =  ( <" C D E "> `  1
) )
6 uncfval.c . . . . . . . 8  |-  ( ph  ->  D  e.  Cat )
7 s3fv1 12804 . . . . . . . 8  |-  ( D  e.  Cat  ->  ( <" C D E "> `  1
)  =  D )
86, 7syl 16 . . . . . . 7  |-  ( ph  ->  ( <" C D E "> `  1
)  =  D )
98adantr 465 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( <" C D E "> `  1
)  =  D )
105, 9eqtrd 2501 . . . . 5  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  1
)  =  D )
114fveq1d 5859 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  2
)  =  ( <" C D E "> `  2
) )
12 uncfval.d . . . . . . . 8  |-  ( ph  ->  E  e.  Cat )
13 s3fv2 12805 . . . . . . . 8  |-  ( E  e.  Cat  ->  ( <" C D E "> `  2
)  =  E )
1412, 13syl 16 . . . . . . 7  |-  ( ph  ->  ( <" C D E "> `  2
)  =  E )
1514adantr 465 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( <" C D E "> `  2
)  =  E )
1611, 15eqtrd 2501 . . . . 5  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  2
)  =  E )
1710, 16oveq12d 6293 . . . 4  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( ( c ` 
1 ) evalF  ( c `  2
) )  =  ( D evalF 
E ) )
18 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
f  =  G )
194fveq1d 5859 . . . . . . . 8  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  0
)  =  ( <" C D E "> `  0
) )
20 uncfval.f . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
21 funcrcl 15079 . . . . . . . . . . . 12  |-  ( G  e.  ( C  Func  ( D FuncCat  E ) )  -> 
( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
2220, 21syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
2322simpld 459 . . . . . . . . . 10  |-  ( ph  ->  C  e.  Cat )
24 s3fv0 12803 . . . . . . . . . 10  |-  ( C  e.  Cat  ->  ( <" C D E "> `  0
)  =  C )
2523, 24syl 16 . . . . . . . . 9  |-  ( ph  ->  ( <" C D E "> `  0
)  =  C )
2625adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( <" C D E "> `  0
)  =  C )
2719, 26eqtrd 2501 . . . . . . 7  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( c `  0
)  =  C )
2827, 10oveq12d 6293 . . . . . 6  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( ( c ` 
0 )  1stF  ( c `  1 ) )  =  ( C  1stF  D ) )
2918, 28oveq12d 6293 . . . . 5  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( f  o.func  ( (
c `  0 )  1stF  ( c `  1
) ) )  =  ( G  o.func  ( C  1stF  D ) ) )
3027, 10oveq12d 6293 . . . . 5  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( ( c ` 
0 )  2ndF  ( c `  1 ) )  =  ( C  2ndF  D ) )
3129, 30oveq12d 6293 . . . 4  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( ( f  o.func  ( ( c `  0
)  1stF  ( c `  1
) ) ) ⟨,⟩F  ( ( c ` 
0 )  2ndF  ( c `  1 ) ) )  =  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) )
3217, 31oveq12d 6293 . . 3  |-  ( (
ph  /\  ( c  =  <" C D E ">  /\  f  =  G ) )  -> 
( ( ( c `
 1 ) evalF  ( c `
 2 ) )  o.func  ( ( f  o.func  ( ( c `  0
)  1stF  ( c `  1
) ) ) ⟨,⟩F  ( ( c ` 
0 )  2ndF  ( c `  1 ) ) ) )  =  ( ( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )
33 s3cli 12794 . . . 4  |-  <" C D E ">  e. Word  _V
34 elex 3115 . . . 4  |-  ( <" C D E ">  e. Word  _V  ->  <" C D E ">  e.  _V )
3533, 34mp1i 12 . . 3  |-  ( ph  ->  <" C D E ">  e.  _V )
36 elex 3115 . . . 4  |-  ( G  e.  ( C  Func  ( D FuncCat  E ) )  ->  G  e.  _V )
3720, 36syl 16 . . 3  |-  ( ph  ->  G  e.  _V )
38 ovex 6300 . . . 4  |-  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) )  e.  _V
3938a1i 11 . . 3  |-  ( ph  ->  ( ( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) )  e.  _V )
403, 32, 35, 37, 39ovmpt2d 6405 . 2  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  ( ( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )
411, 40syl5eq 2513 1  |-  ( ph  ->  F  =  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3106   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   0cc0 9481   1c1 9482   2c2 10574  Word cword 12487   <"cs3 12757   Catccat 14908    Func cfunc 15070    o.func ccofu 15072   FuncCat cfuc 15158    1stF c1stf 15285    2ndF c2ndf 15286   ⟨,⟩F cprf 15287   evalF cevlf 15325   uncurryF cuncf 15327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782  df-hash 12361  df-word 12495  df-concat 12497  df-s1 12498  df-s2 12763  df-s3 12764  df-func 15074  df-uncf 15331
This theorem is referenced by:  uncfcl  15351  uncf1  15352  uncf2  15353
  Copyright terms: Public domain W3C validator