MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Unicode version

Theorem uncfcurf 15049
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g  |-  G  =  ( <. C ,  D >. curryF  F
)
uncfcurf.c  |-  ( ph  ->  C  e.  Cat )
uncfcurf.d  |-  ( ph  ->  D  e.  Cat )
uncfcurf.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
Assertion
Ref Expression
uncfcurf  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  F )

Proof of Theorem uncfcurf
Dummy variables  f 
g  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . . . 7  |-  ( <" C D E "> uncurryF  G )  =  (
<" C D E "> uncurryF  G )
2 uncfcurf.d . . . . . . . 8  |-  ( ph  ->  D  e.  Cat )
32adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  D  e.  Cat )
4 uncfcurf.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
5 funcrcl 14773 . . . . . . . . . 10  |-  ( F  e.  ( ( C  X.c  D )  Func  E
)  ->  ( ( C  X.c  D )  e.  Cat  /\  E  e.  Cat )
)
64, 5syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( C  X.c  D
)  e.  Cat  /\  E  e.  Cat )
)
76simprd 463 . . . . . . . 8  |-  ( ph  ->  E  e.  Cat )
87adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  E  e.  Cat )
9 uncfcurf.g . . . . . . . . 9  |-  G  =  ( <. C ,  D >. curryF  F
)
10 eqid 2443 . . . . . . . . 9  |-  ( D FuncCat  E )  =  ( D FuncCat  E )
11 uncfcurf.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
129, 10, 11, 2, 4curfcl 15042 . . . . . . . 8  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
1312adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  G  e.  ( C  Func  ( D FuncCat  E ) ) )
14 eqid 2443 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
15 eqid 2443 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
16 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  x  e.  ( Base `  C
) )
17 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  y  e.  ( Base `  D
) )
181, 3, 8, 13, 14, 15, 16, 17uncf1 15046 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( ( 1st `  ( ( 1st `  G ) `
 x ) ) `
 y ) )
1911adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  C  e.  Cat )
204adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
21 eqid 2443 . . . . . . 7  |-  ( ( 1st `  G ) `
 x )  =  ( ( 1st `  G
) `  x )
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 15036 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
( 1st `  (
( 1st `  G
) `  x )
) `  y )  =  ( x ( 1st `  F ) y ) )
2318, 22eqtrd 2475 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) )
2423ralrimivva 2808 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) )
25 eqid 2443 . . . . . . . 8  |-  ( C  X.c  D )  =  ( C  X.c  D )
2625, 14, 15xpcbas 14988 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  ( C  X.c  D ) )
27 eqid 2443 . . . . . . 7  |-  ( Base `  E )  =  (
Base `  E )
28 relfunc 14772 . . . . . . . 8  |-  Rel  (
( C  X.c  D ) 
Func  E )
291, 2, 7, 12uncfcl 15045 . . . . . . . 8  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D ) 
Func  E ) )
30 1st2ndbr 6623 . . . . . . . 8  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D )  Func  E
) )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
3128, 29, 30sylancr 663 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
3226, 27, 31funcf1 14776 . . . . . 6  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  E )
)
33 ffn 5559 . . . . . 6  |-  ( ( 1st `  ( <" C D E "> uncurryF  G ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  E )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) ) )
3432, 33syl 16 . . . . 5  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) ) )
35 1st2ndbr 6623 . . . . . . . 8  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3628, 4, 35sylancr 663 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3726, 27, 36funcf1 14776 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) : ( (
Base `  C )  X.  ( Base `  D
) ) --> ( Base `  E ) )
38 ffn 5559 . . . . . 6  |-  ( ( 1st `  F ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  E
)  ->  ( 1st `  F )  Fn  (
( Base `  C )  X.  ( Base `  D
) ) )
3937, 38syl 16 . . . . 5  |-  ( ph  ->  ( 1st `  F
)  Fn  ( (
Base `  C )  X.  ( Base `  D
) ) )
40 eqfnov2 6197 . . . . 5  |-  ( ( ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  ( 1st `  F )  Fn  ( ( Base `  C )  X.  ( Base `  D ) ) )  ->  ( ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
)  <->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) ) )
4134, 39, 40syl2anc 661 . . . 4  |-  ( ph  ->  ( ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
)  <->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) ) )
4224, 41mpbird 232 . . 3  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
) )
432ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  D  e.  Cat )
447ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  E  e.  Cat )
4512ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  G  e.  ( C  Func  ( D FuncCat  E ) ) )
4616adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  x  e.  ( Base `  C )
)
4746adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  x  e.  (
Base `  C )
)
4817adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  y  e.  ( Base `  D )
)
4948adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  y  e.  (
Base `  D )
)
50 eqid 2443 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
51 eqid 2443 . . . . . . . . . . 11  |-  ( Hom  `  D )  =  ( Hom  `  D )
52 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  z  e.  ( Base `  C )
)
5352adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  z  e.  (
Base `  C )
)
54 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  w  e.  ( Base `  D )
)
5554adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  w  e.  (
Base `  D )
)
56 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  f  e.  ( x ( Hom  `  C
) z ) )
57 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  g  e.  ( y ( Hom  `  D
) w ) )
581, 43, 44, 45, 14, 15, 47, 49, 50, 51, 53, 55, 56, 57uncf2 15047 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) ) )
5911ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  C  e.  Cat )
604ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  F  e.  ( ( C  X.c  D ) 
Func  E ) )
619, 14, 59, 43, 60, 15, 47, 21, 49curf11 15036 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )  =  ( x ( 1st `  F ) y ) )
62 df-ov 6094 . . . . . . . . . . . . . . 15  |-  ( x ( 1st `  F
) y )  =  ( ( 1st `  F
) `  <. x ,  y >. )
6361, 62syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )  =  ( ( 1st `  F ) `  <. x ,  y >. )
)
649, 14, 59, 43, 60, 15, 47, 21, 55curf11 15036 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w )  =  ( x ( 1st `  F ) w ) )
65 df-ov 6094 . . . . . . . . . . . . . . 15  |-  ( x ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. x ,  w >. )
6664, 65syl6eq 2491 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w )  =  ( ( 1st `  F ) `  <. x ,  w >. )
)
6763, 66opeq12d 4067 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >.  =  <. ( ( 1st `  F ) `  <. x ,  y >. ) ,  ( ( 1st `  F ) `  <. x ,  w >. ) >. )
68 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  G ) `
 z )  =  ( ( 1st `  G
) `  z )
699, 14, 59, 43, 60, 15, 53, 68, 55curf11 15036 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  z )
) `  w )  =  ( z ( 1st `  F ) w ) )
70 df-ov 6094 . . . . . . . . . . . . . 14  |-  ( z ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. z ,  w >. )
7169, 70syl6eq 2491 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  z )
) `  w )  =  ( ( 1st `  F ) `  <. z ,  w >. )
)
7267, 71oveq12d 6109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. x ,  y >. ) ,  ( ( 1st `  F
) `  <. x ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) )
73 eqid 2443 . . . . . . . . . . . . . 14  |-  ( Id
`  D )  =  ( Id `  D
)
74 eqid 2443 . . . . . . . . . . . . . 14  |-  ( ( x ( 2nd `  G
) z ) `  f )  =  ( ( x ( 2nd `  G ) z ) `
 f )
759, 14, 59, 43, 60, 15, 50, 73, 47, 53, 56, 74, 55curf2val 15040 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
)  =  ( f ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) ) )
76 df-ov 6094 . . . . . . . . . . . . 13  |-  ( f ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) )  =  ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
7775, 76syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
)  =  ( (
<. x ,  w >. ( 2nd `  F )
<. z ,  w >. ) `
 <. f ,  ( ( Id `  D
) `  w ) >. ) )
78 eqid 2443 . . . . . . . . . . . . . 14  |-  ( Id
`  C )  =  ( Id `  C
)
799, 14, 59, 43, 60, 15, 47, 21, 49, 51, 78, 55, 57curf12 15037 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g )  =  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  w >. ) g ) )
80 df-ov 6094 . . . . . . . . . . . . 13  |-  ( ( ( Id `  C
) `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) g )  =  ( ( <. x ,  y >. ( 2nd `  F ) <.
x ,  w >. ) `
 <. ( ( Id
`  C ) `  x ) ,  g
>. )
8179, 80syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g )  =  ( ( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
)
8272, 77, 81oveq123d 6112 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( ( x ( 2nd `  G ) z ) `
 f ) `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) )  =  ( ( ( <.
x ,  w >. ( 2nd `  F )
<. z ,  w >. ) `
 <. f ,  ( ( Id `  D
) `  w ) >. ) ( <. (
( 1st `  F
) `  <. x ,  y >. ) ,  ( ( 1st `  F
) `  <. x ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) ( (
<. x ,  y >.
( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
) )
83 eqid 2443 . . . . . . . . . . . 12  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
84 eqid 2443 . . . . . . . . . . . 12  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
85 eqid 2443 . . . . . . . . . . . 12  |-  (comp `  E )  =  (comp `  E )
8636ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
8786adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
88 opelxpi 4871 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) )  ->  <. x ,  y >.  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
8988ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  <. x ,  y >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9089adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. x ,  y
>.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
91 opelxpi 4871 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. x ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9247, 55, 91syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. x ,  w >.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
93 opelxpi 4871 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9493adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9594adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. z ,  w >.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
9614, 50, 78, 59, 47catidcl 14620 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( Id
`  C ) `  x )  e.  ( x ( Hom  `  C
) x ) )
97 opelxpi 4871 . . . . . . . . . . . . . 14  |-  ( ( ( ( Id `  C ) `  x
)  e.  ( x ( Hom  `  C
) x )  /\  g  e.  ( y
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  x
) ,  g >.  e.  ( ( x ( Hom  `  C )
x )  X.  (
y ( Hom  `  D
) w ) ) )
9896, 57, 97syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  x ) ,  g
>.  e.  ( ( x ( Hom  `  C
) x )  X.  ( y ( Hom  `  D ) w ) ) )
9925, 14, 15, 50, 51, 47, 49, 47, 55, 83xpchom2 14996 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. x ,  w >. )  =  ( ( x ( Hom  `  C ) x )  X.  ( y ( Hom  `  D )
w ) ) )
10098, 99eleqtrrd 2520 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  x ) ,  g
>.  e.  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. x ,  w >. ) )
10115, 51, 73, 43, 55catidcl 14620 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( Id
`  D ) `  w )  e.  ( w ( Hom  `  D
) w ) )
102 opelxpi 4871 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( x ( Hom  `  C
) z )  /\  ( ( Id `  D ) `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
10356, 101, 102syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
10425, 14, 15, 50, 51, 47, 55, 53, 55, 83xpchom2 14996 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. )  =  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
105103, 104eleqtrrd 2520 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( <. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. ) )
10626, 83, 84, 85, 87, 90, 92, 95, 100, 105funcco 14781 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
( <. ( ( 1st `  F ) `  <. x ,  y >. ) ,  ( ( 1st `  F ) `  <. x ,  w >. ) >. (comp `  E )
( ( 1st `  F
) `  <. z ,  w >. ) ) ( ( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
) )
107 eqid 2443 . . . . . . . . . . . . . . 15  |-  (comp `  C )  =  (comp `  C )
108 eqid 2443 . . . . . . . . . . . . . . 15  |-  (comp `  D )  =  (comp `  D )
10925, 14, 15, 50, 51, 47, 49, 47, 55, 107, 108, 84, 53, 55, 96, 57, 56, 101xpcco2 14997 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. f ,  ( ( Id
`  D ) `  w ) >. ( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
)  =  <. (
f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ,  ( ( ( Id `  D
) `  w )
( <. y ,  w >. (comp `  D )
w ) g )
>. )
110109fveq2d 5695 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( <. x ,  y
>. ( 2nd `  F
) <. z ,  w >. ) `  <. (
f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ,  ( ( ( Id `  D
) `  w )
( <. y ,  w >. (comp `  D )
w ) g )
>. ) )
111 df-ov 6094 . . . . . . . . . . . . 13  |-  ( ( f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ( ( ( Id
`  D ) `  w ) ( <.
y ,  w >. (comp `  D ) w ) g ) )  =  ( ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) `
 <. ( f (
<. x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) ) ,  ( ( ( Id `  D ) `  w
) ( <. y ,  w >. (comp `  D
) w ) g ) >. )
112110, 111syl6eqr 2493 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( f ( <.
x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) ) ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g ) ) )
11314, 50, 78, 59, 47, 107, 53, 56catrid 14622 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) )  =  f )
11415, 51, 73, 43, 49, 108, 55, 57catlid 14621 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g )  =  g )
115113, 114oveq12d 6109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( f ( <. x ,  x >. (comp `  C )
z ) ( ( Id `  C ) `
 x ) ) ( <. x ,  y
>. ( 2nd `  F
) <. z ,  w >. ) ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g ) )  =  ( f ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) g ) )
116112, 115eqtrd 2475 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
11782, 106, 1163eqtr2d 2481 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( ( x ( 2nd `  G ) z ) `
 f ) `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) )  =  ( f ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) g ) )
11858, 117eqtrd 2475 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
119118ralrimivva 2808 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  A. f  e.  ( x ( Hom  `  C ) z ) A. g  e.  ( y ( Hom  `  D
) w ) ( f ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
120 eqid 2443 . . . . . . . . . . . 12  |-  ( Hom  `  E )  =  ( Hom  `  E )
12131ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
12226, 83, 120, 121, 89, 94funcf2 14778 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) )
12325, 14, 15, 50, 51, 46, 48, 52, 54, 83xpchom2 14996 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. )  =  ( ( x ( Hom  `  C ) z )  X.  ( y ( Hom  `  D )
w ) ) )
124123feq2d 5547 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) )  <->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) ) )
125122, 124mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) )
126 ffn 5559 . . . . . . . . . 10  |-  ( (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
127125, 126syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
12826, 83, 120, 86, 89, 94funcf2 14778 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  F
) `  <. x ,  y >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) )
129123feq2d 5547 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  F
) <. z ,  w >. ) : ( <.
x ,  y >.
( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. ) --> ( ( ( 1st `  F ) `  <. x ,  y >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. z ,  w >. ) )  <->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
) ) )
130128, 129mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
) )
131 ffn 5559 . . . . . . . . . 10  |-  ( (
<. x ,  y >.
( 2nd `  F
) <. z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
)  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
132130, 131syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
133 eqfnov2 6197 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) )  /\  ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )  ->  (
( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  <->  A. f  e.  (
x ( Hom  `  C
) z ) A. g  e.  ( y
( Hom  `  D ) w ) ( f ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) ) )
134127, 132, 133syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  <->  A. f  e.  (
x ( Hom  `  C
) z ) A. g  e.  ( y
( Hom  `  D ) w ) ( f ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) ) )
135119, 134mpbird 232 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
136135ralrimivva 2808 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
137136ralrimivva 2808 . . . . 5  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) A. z  e.  ( Base `  C ) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
138 oveq2 6099 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) )
139 oveq2 6099 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( u ( 2nd `  F ) v )  =  ( u ( 2nd `  F
) <. z ,  w >. ) )
140138, 139eqeq12d 2457 . . . . . . . 8  |-  ( v  =  <. z ,  w >.  ->  ( ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  ( u
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. ) ) )
141140ralxp 4981 . . . . . . 7  |-  ( A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. ) )
142 oveq1 6098 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) )
143 oveq1 6098 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( u ( 2nd `  F )
<. z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
144142, 143eqeq12d 2457 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. )  <-> 
( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
1451442ralbidv 2757 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. )  <->  A. z  e.  ( Base `  C ) A. w  e.  ( Base `  D ) ( <.
x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
146141, 145syl5bb 257 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. v  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
147146ralxp 4981 . . . . 5  |-  ( A. u  e.  ( ( Base `  C )  X.  ( Base `  D
) ) A. v  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  D
) A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
148137, 147sylibr 212 . . . 4  |-  ( ph  ->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) )
14926, 31funcfn2 14779 . . . . 5  |-  ( ph  ->  ( 2nd `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  D ) )  X.  ( ( Base `  C )  X.  ( Base `  D ) ) ) )
15026, 36funcfn2 14779 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
151 eqfnov2 6197 . . . . 5  |-  ( ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  D ) )  X.  ( ( Base `  C )  X.  ( Base `  D ) ) )  /\  ( 2nd `  F )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )  ->  ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
)  <->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) ) )
152149, 150, 151syl2anc 661 . . . 4  |-  ( ph  ->  ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
)  <->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) ) )
153148, 152mpbird 232 . . 3  |-  ( ph  ->  ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
) )
15442, 153opeq12d 4067 . 2  |-  ( ph  -> 
<. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
155 1st2nd 6620 . . 3  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D )  Func  E
) )  ->  ( <" C D E "> uncurryF  G )  =  <. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.
)
15628, 29, 155sylancr 663 . 2  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  <. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.
)
157 1st2nd 6620 . . 3  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
15828, 4, 157sylancr 663 . 2  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
159154, 156, 1583eqtr4d 2485 1  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   <.cop 3883   class class class wbr 4292    X. cxp 4838   Rel wrel 4845    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   1stc1st 6575   2ndc2nd 6576   <"cs3 12469   Basecbs 14174   Hom chom 14249  compcco 14250   Catccat 14602   Idccid 14603    Func cfunc 14764   FuncCat cfuc 14852    X.c cxpc 14978   curryF ccurf 15020   uncurryF cuncf 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-fzo 11549  df-hash 12104  df-word 12229  df-concat 12231  df-s1 12232  df-s2 12475  df-s3 12476  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-hom 14262  df-cco 14263  df-cat 14606  df-cid 14607  df-func 14768  df-cofu 14770  df-nat 14853  df-fuc 14854  df-xpc 14982  df-1stf 14983  df-2ndf 14984  df-prf 14985  df-evlf 15023  df-curf 15024  df-uncf 15025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator