MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn Structured version   Unicode version

Theorem unbnn 7833
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 8163 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unbnn  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Distinct variable group:    x, y, A

Proof of Theorem unbnn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssdomg 7622 . . . 4  |-  ( om  e.  _V  ->  ( A  C_  om  ->  A  ~<_  om ) )
21imp 430 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om )  ->  A  ~<_  om )
323adant3 1025 . 2  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~<_  om )
4 simp1 1005 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  om  e.  _V )
5 ssexg 4571 . . . . 5  |-  ( ( A  C_  om  /\  om  e.  _V )  ->  A  e.  _V )
65ancoms 454 . . . 4  |-  ( ( om  e.  _V  /\  A  C_  om )  ->  A  e.  _V )
763adant3 1025 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  e.  _V )
8 eqid 2429 . . . . 5  |-  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om )  =  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om )
98unblem4 7832 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)
1093adant1 1023 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)
11 f1dom2g 7594 . . 3  |-  ( ( om  e.  _V  /\  A  e.  _V  /\  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)  ->  om  ~<_  A )
124, 7, 10, 11syl3anc 1264 . 2  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  om  ~<_  A )
13 sbth 7698 . 2  |-  ( ( A  ~<_  om  /\  om  ~<_  A )  ->  A  ~~  om )
143, 12, 13syl2anc 665 1  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    e. wcel 1870   A.wral 2782   E.wrex 2783   _Vcvv 3087    \ cdif 3439    C_ wss 3442   |^|cint 4258   class class class wbr 4426    |-> cmpt 4484    |` cres 4856   suc csuc 5444   -1-1->wf1 5598   omcom 6706   reccrdg 7135    ~~ cen 7574    ~<_ cdom 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-en 7578  df-dom 7579
This theorem is referenced by:  unbnn2  7834  isfinite2  7835  unbnn3  8163
  Copyright terms: Public domain W3C validator