MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem3 Structured version   Unicode version

Theorem unblem3 7774
Description: Lemma for unbnn 7776. The value of the function  F is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 unblem.2 . . . . . . 7  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
21unblem2 7773 . . . . . 6  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
32imp 429 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  A )
4 omsson 6688 . . . . . . . 8  |-  om  C_  On
5 sstr 3512 . . . . . . . 8  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
64, 5mpan2 671 . . . . . . 7  |-  ( A 
C_  om  ->  A  C_  On )
7 ssel 3498 . . . . . . . 8  |-  ( A 
C_  On  ->  ( ( F `  z )  e.  A  ->  ( F `  z )  e.  On ) )
87anc2li 557 . . . . . . 7  |-  ( A 
C_  On  ->  ( ( F `  z )  e.  A  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) ) )
96, 8syl 16 . . . . . 6  |-  ( A 
C_  om  ->  ( ( F `  z )  e.  A  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) ) )
109ad2antrr 725 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  (
( F `  z
)  e.  A  -> 
( A  C_  On  /\  ( F `  z
)  e.  On ) ) )
113, 10mpd 15 . . . 4  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) )
12 onmindif 4967 . . . 4  |-  ( ( A  C_  On  /\  ( F `  z )  e.  On )  ->  ( F `  z )  e.  |^| ( A  \  suc  ( F `  z
) ) )
1311, 12syl 16 . . 3  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  |^| ( A  \  suc  ( F `  z
) ) )
14 unblem1 7772 . . . . . . 7  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  z )  e.  A )  ->  |^| ( A  \  suc  ( F `
 z ) )  e.  A )
1514ex 434 . . . . . 6  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  z
)  e.  A  ->  |^| ( A  \  suc  ( F `  z ) )  e.  A ) )
162, 15syld 44 . . . . 5  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  |^| ( A  \  suc  ( F `  z ) )  e.  A ) )
17 suceq 4943 . . . . . . . . 9  |-  ( y  =  x  ->  suc  y  =  suc  x )
1817difeq2d 3622 . . . . . . . 8  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
1918inteqd 4287 . . . . . . 7  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
20 suceq 4943 . . . . . . . . 9  |-  ( y  =  ( F `  z )  ->  suc  y  =  suc  ( F `
 z ) )
2120difeq2d 3622 . . . . . . . 8  |-  ( y  =  ( F `  z )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  z
) ) )
2221inteqd 4287 . . . . . . 7  |-  ( y  =  ( F `  z )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  z ) ) )
231, 19, 22frsucmpt2 7105 . . . . . 6  |-  ( ( z  e.  om  /\  |^| ( A  \  suc  ( F `  z ) )  e.  A )  ->  ( F `  suc  z )  =  |^| ( A  \  suc  ( F `  z )
) )
2423ex 434 . . . . 5  |-  ( z  e.  om  ->  ( |^| ( A  \  suc  ( F `  z ) )  e.  A  -> 
( F `  suc  z )  =  |^| ( A  \  suc  ( F `  z )
) ) )
2516, 24sylcom 29 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  suc  z
)  =  |^| ( A  \  suc  ( F `
 z ) ) ) )
2625imp 429 . . 3  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  suc  z )  =  |^| ( A 
\  suc  ( F `  z ) ) )
2713, 26eleqtrrd 2558 . 2  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  ( F `  suc  z ) )
2827ex 434 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    C_ wss 3476   |^|cint 4282    |-> cmpt 4505   Oncon0 4878   suc csuc 4880    |` cres 5001   ` cfv 5588   omcom 6684   reccrdg 7075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-recs 7042  df-rdg 7076
This theorem is referenced by:  unblem4  7775
  Copyright terms: Public domain W3C validator