MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Unicode version

Theorem unblem2 7828
Description: Lemma for unbnn 7831. The value of the function  F belongs to the unbounded set of natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem2
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5879 . . . 4  |-  ( z  =  (/)  ->  ( F `
 z )  =  ( F `  (/) ) )
21eleq1d 2492 . . 3  |-  ( z  =  (/)  ->  ( ( F `  z )  e.  A  <->  ( F `  (/) )  e.  A
) )
3 fveq2 5879 . . . 4  |-  ( z  =  u  ->  ( F `  z )  =  ( F `  u ) )
43eleq1d 2492 . . 3  |-  ( z  =  u  ->  (
( F `  z
)  e.  A  <->  ( F `  u )  e.  A
) )
5 fveq2 5879 . . . 4  |-  ( z  =  suc  u  -> 
( F `  z
)  =  ( F `
 suc  u )
)
65eleq1d 2492 . . 3  |-  ( z  =  suc  u  -> 
( ( F `  z )  e.  A  <->  ( F `  suc  u
)  e.  A ) )
7 omsson 6708 . . . . . 6  |-  om  C_  On
8 sstr 3473 . . . . . 6  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
97, 8mpan2 676 . . . . 5  |-  ( A 
C_  om  ->  A  C_  On )
10 peano1 6724 . . . . . . . . 9  |-  (/)  e.  om
11 eleq1 2495 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( w  e.  v  <->  (/)  e.  v ) )
1211rexbidv 2940 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( E. v  e.  A  w  e.  v  <->  E. v  e.  A  (/)  e.  v ) )
1312rspcv 3179 . . . . . . . . 9  |-  ( (/)  e.  om  ->  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v ) )
1410, 13ax-mp 5 . . . . . . . 8  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v )
15 df-rex 2782 . . . . . . . 8  |-  ( E. v  e.  A  (/)  e.  v  <->  E. v ( v  e.  A  /\  (/)  e.  v ) )
1614, 15sylib 200 . . . . . . 7  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v ( v  e.  A  /\  (/)  e.  v ) )
17 exsimpl 1723 . . . . . . 7  |-  ( E. v ( v  e.  A  /\  (/)  e.  v )  ->  E. v 
v  e.  A )
1816, 17syl 17 . . . . . 6  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  v  e.  A )
19 n0 3772 . . . . . 6  |-  ( A  =/=  (/)  <->  E. v  v  e.  A )
2018, 19sylibr 216 . . . . 5  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  A  =/=  (/) )
21 onint 6634 . . . . 5  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
229, 20, 21syl2an 480 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  |^| A  e.  A )
23 unblem.2 . . . . . . . 8  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
2423fveq1i 5880 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )
25 fr0g 7159 . . . . . . 7  |-  ( |^| A  e.  A  ->  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )  = 
|^| A )
2624, 25syl5req 2477 . . . . . 6  |-  ( |^| A  e.  A  ->  |^| A  =  ( F `
 (/) ) )
2726eleq1d 2492 . . . . 5  |-  ( |^| A  e.  A  ->  (
|^| A  e.  A  <->  ( F `  (/) )  e.  A ) )
2827ibi 245 . . . 4  |-  ( |^| A  e.  A  ->  ( F `  (/) )  e.  A )
2922, 28syl 17 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  (/) )  e.  A )
30 unblem1 7827 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  ->  |^| ( A  \  suc  ( F `
 u ) )  e.  A )
31 suceq 5505 . . . . . . . . . . . 12  |-  ( y  =  x  ->  suc  y  =  suc  x )
3231difeq2d 3584 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
3332inteqd 4258 . . . . . . . . . 10  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
34 suceq 5505 . . . . . . . . . . . 12  |-  ( y  =  ( F `  u )  ->  suc  y  =  suc  ( F `
 u ) )
3534difeq2d 3584 . . . . . . . . . . 11  |-  ( y  =  ( F `  u )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  u
) ) )
3635inteqd 4258 . . . . . . . . . 10  |-  ( y  =  ( F `  u )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  u ) ) )
3723, 33, 36frsucmpt2 7163 . . . . . . . . 9  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( F `  suc  u )  =  |^| ( A  \  suc  ( F `  u )
) )
3837eqcomd 2431 . . . . . . . 8  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  |^| ( A  \  suc  ( F `  u
) )  =  ( F `  suc  u
) )
3938eleq1d 2492 . . . . . . 7  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( |^| ( A  \  suc  ( F `
 u ) )  e.  A  <->  ( F `  suc  u )  e.  A ) )
4039ex 436 . . . . . 6  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( |^| ( A  \  suc  ( F `  u
) )  e.  A  <->  ( F `  suc  u
)  e.  A ) ) )
4140ibd 247 . . . . 5  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( F `  suc  u )  e.  A
) )
4230, 41syl5 34 . . . 4  |-  ( u  e.  om  ->  (
( ( A  C_  om 
/\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  -> 
( F `  suc  u )  e.  A
) )
4342expd 438 . . 3  |-  ( u  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  u
)  e.  A  -> 
( F `  suc  u )  e.  A
) ) )
442, 4, 6, 29, 43finds2 6733 . 2  |-  ( z  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  z )  e.  A ) )
4544com12 33 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438   E.wex 1660    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777   _Vcvv 3082    \ cdif 3434    C_ wss 3437   (/)c0 3762   |^|cint 4253    |-> cmpt 4480    |` cres 4853   Oncon0 5440   suc csuc 5442   ` cfv 5599   omcom 6704   reccrdg 7133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134
This theorem is referenced by:  unblem3  7829  unblem4  7830
  Copyright terms: Public domain W3C validator