MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Unicode version

Theorem unblem2 7564
Description: Lemma for unbnn 7567. The value of the function  F belongs to the unbounded set of natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem2
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5690 . . . 4  |-  ( z  =  (/)  ->  ( F `
 z )  =  ( F `  (/) ) )
21eleq1d 2508 . . 3  |-  ( z  =  (/)  ->  ( ( F `  z )  e.  A  <->  ( F `  (/) )  e.  A
) )
3 fveq2 5690 . . . 4  |-  ( z  =  u  ->  ( F `  z )  =  ( F `  u ) )
43eleq1d 2508 . . 3  |-  ( z  =  u  ->  (
( F `  z
)  e.  A  <->  ( F `  u )  e.  A
) )
5 fveq2 5690 . . . 4  |-  ( z  =  suc  u  -> 
( F `  z
)  =  ( F `
 suc  u )
)
65eleq1d 2508 . . 3  |-  ( z  =  suc  u  -> 
( ( F `  z )  e.  A  <->  ( F `  suc  u
)  e.  A ) )
7 omsson 6479 . . . . . 6  |-  om  C_  On
8 sstr 3363 . . . . . 6  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
97, 8mpan2 671 . . . . 5  |-  ( A 
C_  om  ->  A  C_  On )
10 peano1 6494 . . . . . . . . 9  |-  (/)  e.  om
11 eleq1 2502 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( w  e.  v  <->  (/)  e.  v ) )
1211rexbidv 2735 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( E. v  e.  A  w  e.  v  <->  E. v  e.  A  (/)  e.  v ) )
1312rspcv 3068 . . . . . . . . 9  |-  ( (/)  e.  om  ->  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v ) )
1410, 13ax-mp 5 . . . . . . . 8  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v )
15 df-rex 2720 . . . . . . . 8  |-  ( E. v  e.  A  (/)  e.  v  <->  E. v ( v  e.  A  /\  (/)  e.  v ) )
1614, 15sylib 196 . . . . . . 7  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v ( v  e.  A  /\  (/)  e.  v ) )
17 exsimpl 1644 . . . . . . 7  |-  ( E. v ( v  e.  A  /\  (/)  e.  v )  ->  E. v 
v  e.  A )
1816, 17syl 16 . . . . . 6  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  v  e.  A )
19 n0 3645 . . . . . 6  |-  ( A  =/=  (/)  <->  E. v  v  e.  A )
2018, 19sylibr 212 . . . . 5  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  A  =/=  (/) )
21 onint 6405 . . . . 5  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
229, 20, 21syl2an 477 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  |^| A  e.  A )
23 unblem.2 . . . . . . . 8  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
2423fveq1i 5691 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )
25 fr0g 6890 . . . . . . 7  |-  ( |^| A  e.  A  ->  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )  = 
|^| A )
2624, 25syl5req 2487 . . . . . 6  |-  ( |^| A  e.  A  ->  |^| A  =  ( F `
 (/) ) )
2726eleq1d 2508 . . . . 5  |-  ( |^| A  e.  A  ->  (
|^| A  e.  A  <->  ( F `  (/) )  e.  A ) )
2827ibi 241 . . . 4  |-  ( |^| A  e.  A  ->  ( F `  (/) )  e.  A )
2922, 28syl 16 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  (/) )  e.  A )
30 unblem1 7563 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  ->  |^| ( A  \  suc  ( F `
 u ) )  e.  A )
31 suceq 4783 . . . . . . . . . . . 12  |-  ( y  =  x  ->  suc  y  =  suc  x )
3231difeq2d 3473 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
3332inteqd 4132 . . . . . . . . . 10  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
34 suceq 4783 . . . . . . . . . . . 12  |-  ( y  =  ( F `  u )  ->  suc  y  =  suc  ( F `
 u ) )
3534difeq2d 3473 . . . . . . . . . . 11  |-  ( y  =  ( F `  u )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  u
) ) )
3635inteqd 4132 . . . . . . . . . 10  |-  ( y  =  ( F `  u )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  u ) ) )
3723, 33, 36frsucmpt2 6894 . . . . . . . . 9  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( F `  suc  u )  =  |^| ( A  \  suc  ( F `  u )
) )
3837eqcomd 2447 . . . . . . . 8  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  |^| ( A  \  suc  ( F `  u
) )  =  ( F `  suc  u
) )
3938eleq1d 2508 . . . . . . 7  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( |^| ( A  \  suc  ( F `
 u ) )  e.  A  <->  ( F `  suc  u )  e.  A ) )
4039ex 434 . . . . . 6  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( |^| ( A  \  suc  ( F `  u
) )  e.  A  <->  ( F `  suc  u
)  e.  A ) ) )
4140ibd 243 . . . . 5  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( F `  suc  u )  e.  A
) )
4230, 41syl5 32 . . . 4  |-  ( u  e.  om  ->  (
( ( A  C_  om 
/\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  -> 
( F `  suc  u )  e.  A
) )
4342expd 436 . . 3  |-  ( u  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  u
)  e.  A  -> 
( F `  suc  u )  e.  A
) ) )
442, 4, 6, 29, 43finds2 6503 . 2  |-  ( z  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  z )  e.  A ) )
4544com12 31 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   _Vcvv 2971    \ cdif 3324    C_ wss 3327   (/)c0 3636   |^|cint 4127    e. cmpt 4349   Oncon0 4718   suc csuc 4720    |` cres 4841   ` cfv 5417   omcom 6475   reccrdg 6864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-om 6476  df-recs 6831  df-rdg 6865
This theorem is referenced by:  unblem3  7565  unblem4  7566
  Copyright terms: Public domain W3C validator