MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Unicode version

Theorem unblem1 7772
Description: Lemma for unbnn 7776. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 6688 . . . . . 6  |-  om  C_  On
2 sstr 3512 . . . . . 6  |-  ( ( B  C_  om  /\  om  C_  On )  ->  B  C_  On )
31, 2mpan2 671 . . . . 5  |-  ( B 
C_  om  ->  B  C_  On )
43ssdifssd 3642 . . . 4  |-  ( B 
C_  om  ->  ( B 
\  suc  A )  C_  On )
54ad2antrr 725 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A ) 
C_  On )
6 ssel 3498 . . . . . 6  |-  ( B 
C_  om  ->  ( A  e.  B  ->  A  e.  om ) )
7 peano2b 6700 . . . . . 6  |-  ( A  e.  om  <->  suc  A  e. 
om )
86, 7syl6ib 226 . . . . 5  |-  ( B 
C_  om  ->  ( A  e.  B  ->  suc  A  e.  om ) )
9 eleq1 2539 . . . . . . . 8  |-  ( x  =  suc  A  -> 
( x  e.  y  <->  suc  A  e.  y ) )
109rexbidv 2973 . . . . . . 7  |-  ( x  =  suc  A  -> 
( E. y  e.  B  x  e.  y  <->  E. y  e.  B  suc  A  e.  y ) )
1110rspccva 3213 . . . . . 6  |-  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  ->  E. y  e.  B  suc  A  e.  y )
12 ssel 3498 . . . . . . . . . . 11  |-  ( B 
C_  om  ->  ( y  e.  B  ->  y  e.  om ) )
13 nnord 6692 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  Ord  y )
14 ordn2lp 4898 . . . . . . . . . . . . . 14  |-  ( Ord  y  ->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
15 imnan 422 . . . . . . . . . . . . . 14  |-  ( ( y  e.  suc  A  ->  -.  suc  A  e.  y )  <->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
1614, 15sylibr 212 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  ( y  e.  suc  A  ->  -.  suc  A  e.  y ) )
1716con2d 115 . . . . . . . . . . . 12  |-  ( Ord  y  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1813, 17syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1912, 18syl6 33 . . . . . . . . . 10  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) ) )
2019imdistand 692 . . . . . . . . 9  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( y  e.  B  /\  -.  y  e.  suc  A ) ) )
21 eldif 3486 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  <->  ( y  e.  B  /\  -.  y  e.  suc  A ) )
22 ne0i 3791 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2321, 22sylbir 213 . . . . . . . . 9  |-  ( ( y  e.  B  /\  -.  y  e.  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2420, 23syl6 33 . . . . . . . 8  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( B  \  suc  A )  =/=  (/) ) )
2524expd 436 . . . . . . 7  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  -> 
( B  \  suc  A )  =/=  (/) ) ) )
2625rexlimdv 2953 . . . . . 6  |-  ( B 
C_  om  ->  ( E. y  e.  B  suc  A  e.  y  ->  ( B  \  suc  A )  =/=  (/) ) )
2711, 26syl5 32 . . . . 5  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  -> 
( B  \  suc  A )  =/=  (/) ) )
288, 27sylan2d 482 . . . 4  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) ) )
2928impl 620 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) )
30 onint 6614 . . 3  |-  ( ( ( B  \  suc  A )  C_  On  /\  ( B  \  suc  A )  =/=  (/) )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
315, 29, 30syl2anc 661 . 2  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
3231eldifad 3488 1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473    C_ wss 3476   (/)c0 3785   |^|cint 4282   Ord word 4877   Oncon0 4878   suc csuc 4880   omcom 6684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-om 6685
This theorem is referenced by:  unblem2  7773  unblem3  7774
  Copyright terms: Public domain W3C validator