MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Unicode version

Theorem unblem1 7556
Description: Lemma for unbnn 7560. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 6475 . . . . . 6  |-  om  C_  On
2 sstr 3359 . . . . . 6  |-  ( ( B  C_  om  /\  om  C_  On )  ->  B  C_  On )
31, 2mpan2 671 . . . . 5  |-  ( B 
C_  om  ->  B  C_  On )
43ssdifssd 3489 . . . 4  |-  ( B 
C_  om  ->  ( B 
\  suc  A )  C_  On )
54ad2antrr 725 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A ) 
C_  On )
6 ssel 3345 . . . . . 6  |-  ( B 
C_  om  ->  ( A  e.  B  ->  A  e.  om ) )
7 peano2b 6487 . . . . . 6  |-  ( A  e.  om  <->  suc  A  e. 
om )
86, 7syl6ib 226 . . . . 5  |-  ( B 
C_  om  ->  ( A  e.  B  ->  suc  A  e.  om ) )
9 eleq1 2498 . . . . . . . 8  |-  ( x  =  suc  A  -> 
( x  e.  y  <->  suc  A  e.  y ) )
109rexbidv 2731 . . . . . . 7  |-  ( x  =  suc  A  -> 
( E. y  e.  B  x  e.  y  <->  E. y  e.  B  suc  A  e.  y ) )
1110rspccva 3067 . . . . . 6  |-  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  ->  E. y  e.  B  suc  A  e.  y )
12 ssel 3345 . . . . . . . . . . 11  |-  ( B 
C_  om  ->  ( y  e.  B  ->  y  e.  om ) )
13 nnord 6479 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  Ord  y )
14 ordn2lp 4734 . . . . . . . . . . . . . 14  |-  ( Ord  y  ->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
15 imnan 422 . . . . . . . . . . . . . 14  |-  ( ( y  e.  suc  A  ->  -.  suc  A  e.  y )  <->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
1614, 15sylibr 212 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  ( y  e.  suc  A  ->  -.  suc  A  e.  y ) )
1716con2d 115 . . . . . . . . . . . 12  |-  ( Ord  y  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1813, 17syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1912, 18syl6 33 . . . . . . . . . 10  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) ) )
2019imdistand 692 . . . . . . . . 9  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( y  e.  B  /\  -.  y  e.  suc  A ) ) )
21 eldif 3333 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  <->  ( y  e.  B  /\  -.  y  e.  suc  A ) )
22 ne0i 3638 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2321, 22sylbir 213 . . . . . . . . 9  |-  ( ( y  e.  B  /\  -.  y  e.  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2420, 23syl6 33 . . . . . . . 8  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( B  \  suc  A )  =/=  (/) ) )
2524expd 436 . . . . . . 7  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  -> 
( B  \  suc  A )  =/=  (/) ) ) )
2625rexlimdv 2835 . . . . . 6  |-  ( B 
C_  om  ->  ( E. y  e.  B  suc  A  e.  y  ->  ( B  \  suc  A )  =/=  (/) ) )
2711, 26syl5 32 . . . . 5  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  -> 
( B  \  suc  A )  =/=  (/) ) )
288, 27sylan2d 482 . . . 4  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) ) )
2928impl 620 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) )
30 onint 6401 . . 3  |-  ( ( ( B  \  suc  A )  C_  On  /\  ( B  \  suc  A )  =/=  (/) )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
315, 29, 30syl2anc 661 . 2  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
3231eldifad 3335 1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    \ cdif 3320    C_ wss 3323   (/)c0 3632   |^|cint 4123   Ord word 4713   Oncon0 4714   suc csuc 4716   omcom 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-br 4288  df-opab 4346  df-tr 4381  df-eprel 4627  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-om 6472
This theorem is referenced by:  unblem2  7557  unblem3  7558
  Copyright terms: Public domain W3C validator