MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Structured version   Unicode version

Theorem unblem1 7790
Description: Lemma for unbnn 7794. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 6703 . . . . . 6  |-  om  C_  On
2 sstr 3507 . . . . . 6  |-  ( ( B  C_  om  /\  om  C_  On )  ->  B  C_  On )
31, 2mpan2 671 . . . . 5  |-  ( B 
C_  om  ->  B  C_  On )
43ssdifssd 3638 . . . 4  |-  ( B 
C_  om  ->  ( B 
\  suc  A )  C_  On )
54ad2antrr 725 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A ) 
C_  On )
6 ssel 3493 . . . . . 6  |-  ( B 
C_  om  ->  ( A  e.  B  ->  A  e.  om ) )
7 peano2b 6715 . . . . . 6  |-  ( A  e.  om  <->  suc  A  e. 
om )
86, 7syl6ib 226 . . . . 5  |-  ( B 
C_  om  ->  ( A  e.  B  ->  suc  A  e.  om ) )
9 eleq1 2529 . . . . . . . 8  |-  ( x  =  suc  A  -> 
( x  e.  y  <->  suc  A  e.  y ) )
109rexbidv 2968 . . . . . . 7  |-  ( x  =  suc  A  -> 
( E. y  e.  B  x  e.  y  <->  E. y  e.  B  suc  A  e.  y ) )
1110rspccva 3209 . . . . . 6  |-  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  ->  E. y  e.  B  suc  A  e.  y )
12 ssel 3493 . . . . . . . . . . 11  |-  ( B 
C_  om  ->  ( y  e.  B  ->  y  e.  om ) )
13 nnord 6707 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  Ord  y )
14 ordn2lp 4907 . . . . . . . . . . . . . 14  |-  ( Ord  y  ->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
15 imnan 422 . . . . . . . . . . . . . 14  |-  ( ( y  e.  suc  A  ->  -.  suc  A  e.  y )  <->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
1614, 15sylibr 212 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  ( y  e.  suc  A  ->  -.  suc  A  e.  y ) )
1716con2d 115 . . . . . . . . . . . 12  |-  ( Ord  y  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1813, 17syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1912, 18syl6 33 . . . . . . . . . 10  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) ) )
2019imdistand 692 . . . . . . . . 9  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( y  e.  B  /\  -.  y  e.  suc  A ) ) )
21 eldif 3481 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  <->  ( y  e.  B  /\  -.  y  e.  suc  A ) )
22 ne0i 3799 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2321, 22sylbir 213 . . . . . . . . 9  |-  ( ( y  e.  B  /\  -.  y  e.  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2420, 23syl6 33 . . . . . . . 8  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( B  \  suc  A )  =/=  (/) ) )
2524expd 436 . . . . . . 7  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  -> 
( B  \  suc  A )  =/=  (/) ) ) )
2625rexlimdv 2947 . . . . . 6  |-  ( B 
C_  om  ->  ( E. y  e.  B  suc  A  e.  y  ->  ( B  \  suc  A )  =/=  (/) ) )
2711, 26syl5 32 . . . . 5  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  -> 
( B  \  suc  A )  =/=  (/) ) )
288, 27sylan2d 482 . . . 4  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) ) )
2928impl 620 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) )
30 onint 6629 . . 3  |-  ( ( ( B  \  suc  A )  C_  On  /\  ( B  \  suc  A )  =/=  (/) )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
315, 29, 30syl2anc 661 . 2  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
3231eldifad 3483 1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808    \ cdif 3468    C_ wss 3471   (/)c0 3793   |^|cint 4288   Ord word 4886   Oncon0 4887   suc csuc 4889   omcom 6699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-om 6700
This theorem is referenced by:  unblem2  7791  unblem3  7792
  Copyright terms: Public domain W3C validator