MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un0mulcl Structured version   Unicode version

Theorem un0mulcl 10626
Description: If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
un0addcl.1  |-  ( ph  ->  S  C_  CC )
un0addcl.2  |-  T  =  ( S  u.  {
0 } )
un0mulcl.3  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
Assertion
Ref Expression
un0mulcl  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )

Proof of Theorem un0mulcl
StepHypRef Expression
1 un0addcl.2 . . . . 5  |-  T  =  ( S  u.  {
0 } )
21eleq2i 2507 . . . 4  |-  ( N  e.  T  <->  N  e.  ( S  u.  { 0 } ) )
3 elun 3509 . . . 4  |-  ( N  e.  ( S  u.  { 0 } )  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
42, 3bitri 249 . . 3  |-  ( N  e.  T  <->  ( N  e.  S  \/  N  e.  { 0 } ) )
51eleq2i 2507 . . . . . 6  |-  ( M  e.  T  <->  M  e.  ( S  u.  { 0 } ) )
6 elun 3509 . . . . . 6  |-  ( M  e.  ( S  u.  { 0 } )  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
75, 6bitri 249 . . . . 5  |-  ( M  e.  T  <->  ( M  e.  S  \/  M  e.  { 0 } ) )
8 ssun1 3531 . . . . . . . . 9  |-  S  C_  ( S  u.  { 0 } )
98, 1sseqtr4i 3401 . . . . . . . 8  |-  S  C_  T
10 un0mulcl.3 . . . . . . . 8  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  S )
119, 10sseldi 3366 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  S  /\  N  e.  S ) )  -> 
( M  x.  N
)  e.  T )
1211expr 615 . . . . . 6  |-  ( (
ph  /\  M  e.  S )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
13 un0addcl.1 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  CC )
1413sselda 3368 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  S )  ->  N  e.  CC )
1514mul02d 9579 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  =  0 )
16 ssun2 3532 . . . . . . . . . . 11  |-  { 0 }  C_  ( S  u.  { 0 } )
1716, 1sseqtr4i 3401 . . . . . . . . . 10  |-  { 0 }  C_  T
18 c0ex 9392 . . . . . . . . . . 11  |-  0  e.  _V
1918snss 4011 . . . . . . . . . 10  |-  ( 0  e.  T  <->  { 0 }  C_  T )
2017, 19mpbir 209 . . . . . . . . 9  |-  0  e.  T
2115, 20syl6eqel 2531 . . . . . . . 8  |-  ( (
ph  /\  N  e.  S )  ->  (
0  x.  N )  e.  T )
22 elsni 3914 . . . . . . . . . 10  |-  ( M  e.  { 0 }  ->  M  =  0 )
2322oveq1d 6118 . . . . . . . . 9  |-  ( M  e.  { 0 }  ->  ( M  x.  N )  =  ( 0  x.  N ) )
2423eleq1d 2509 . . . . . . . 8  |-  ( M  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( 0  x.  N )  e.  T
) )
2521, 24syl5ibrcom 222 . . . . . . 7  |-  ( (
ph  /\  N  e.  S )  ->  ( M  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
2625impancom 440 . . . . . 6  |-  ( (
ph  /\  M  e.  { 0 } )  -> 
( N  e.  S  ->  ( M  x.  N
)  e.  T ) )
2712, 26jaodan 783 . . . . 5  |-  ( (
ph  /\  ( M  e.  S  \/  M  e.  { 0 } ) )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
287, 27sylan2b 475 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  S  ->  ( M  x.  N )  e.  T ) )
29 0cnd 9391 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  CC )
3029snssd 4030 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  CC )
3113, 30unssd 3544 . . . . . . . . 9  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
321, 31syl5eqss 3412 . . . . . . . 8  |-  ( ph  ->  T  C_  CC )
3332sselda 3368 . . . . . . 7  |-  ( (
ph  /\  M  e.  T )  ->  M  e.  CC )
3433mul01d 9580 . . . . . 6  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  =  0 )
3534, 20syl6eqel 2531 . . . . 5  |-  ( (
ph  /\  M  e.  T )  ->  ( M  x.  0 )  e.  T )
36 elsni 3914 . . . . . . 7  |-  ( N  e.  { 0 }  ->  N  =  0 )
3736oveq2d 6119 . . . . . 6  |-  ( N  e.  { 0 }  ->  ( M  x.  N )  =  ( M  x.  0 ) )
3837eleq1d 2509 . . . . 5  |-  ( N  e.  { 0 }  ->  ( ( M  x.  N )  e.  T  <->  ( M  x.  0 )  e.  T
) )
3935, 38syl5ibrcom 222 . . . 4  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  { 0 }  ->  ( M  x.  N )  e.  T
) )
4028, 39jaod 380 . . 3  |-  ( (
ph  /\  M  e.  T )  ->  (
( N  e.  S  \/  N  e.  { 0 } )  ->  ( M  x.  N )  e.  T ) )
414, 40syl5bi 217 . 2  |-  ( (
ph  /\  M  e.  T )  ->  ( N  e.  T  ->  ( M  x.  N )  e.  T ) )
4241impr 619 1  |-  ( (
ph  /\  ( M  e.  T  /\  N  e.  T ) )  -> 
( M  x.  N
)  e.  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    u. cun 3338    C_ wss 3340   {csn 3889  (class class class)co 6103   CCcc 9292   0cc0 9294    x. cmul 9299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-po 4653  df-so 4654  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-ltxr 9435
This theorem is referenced by:  nn0mulcl  10628  plymullem  21696
  Copyright terms: Public domain W3C validator