Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un01 Structured version   Unicode version

Theorem un01 31835
Description: A unionizing deduction (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
un01.1  |-  (. (. T.  ,. ph ).  ->.  ps ).
Assertion
Ref Expression
un01  |-  (. ph  ->.  ps
).

Proof of Theorem un01
StepHypRef Expression
1 tru 1374 . . . 4  |- T.
21jctl 541 . . 3  |-  ( ph  ->  ( T.  /\  ph ) )
3 un01.1 . . . 4  |-  (. (. T.  ,. ph ).  ->.  ps ).
43dfvd2ani 31609 . . 3  |-  ( ( T.  /\  ph )  ->  ps )
52, 4syl 16 . 2  |-  ( ph  ->  ps )
65dfvd1ir 31599 1  |-  (. ph  ->.  ps
).
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   T. wtru 1371   (.wvd1 31595   (.wvhc2 31606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-vd1 31596  df-vhc2 31607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator