MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrass Structured version   Unicode version

Theorem umgrass 23204
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgrass  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)

Proof of Theorem umgrass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3432 . . . 4  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P V  \  { (/) } )
2 difss 3478 . . . 4  |-  ( ~P V  \  { (/) } )  C_  ~P V
31, 2sstri 3360 . . 3  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_ 
~P V
4 umgraf 23203 . . . . 5  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
54ffvelrnda 5838 . . . 4  |-  ( ( ( V UMGrph  E  /\  E  Fn  A )  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
653impa 1182 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
73, 6sseldi 3349 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  ~P V )
87elpwid 3865 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    e. wcel 1756   {crab 2714    \ cdif 3320    C_ wss 3323   (/)c0 3632   ~Pcpw 3855   {csn 3872   class class class wbr 4287    Fn wfn 5408   ` cfv 5413    <_ cle 9411   2c2 10363   #chash 12095   UMGrph cumg 23197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-umgra 23198
This theorem is referenced by:  umgraex  23208
  Copyright terms: Public domain W3C validator