MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgran0 Structured version   Unicode version

Theorem umgran0 23993
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgran0  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )

Proof of Theorem umgran0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3585 . . 3  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P V  \  { (/) } )
2 umgraf 23991 . . . . 5  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
32ffvelrnda 6019 . . . 4  |-  ( ( ( V UMGrph  E  /\  E  Fn  A )  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
433impa 1191 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
51, 4sseldi 3502 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  ( ~P V  \  { (/)
} ) )
6 eldifsni 4153 . 2  |-  ( ( E `  F )  e.  ( ~P V  \  { (/) } )  -> 
( E `  F
)  =/=  (/) )
75, 6syl 16 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   {crab 2818    \ cdif 3473   (/)c0 3785   ~Pcpw 4010   {csn 4027   class class class wbr 4447    Fn wfn 5581   ` cfv 5586    <_ cle 9625   2c2 10581   #chash 12367   UMGrph cumg 23985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-umgra 23986
This theorem is referenced by:  umgraex  23996
  Copyright terms: Public domain W3C validator