MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgran0 Structured version   Unicode version

Theorem umgran0 24737
Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgran0  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )

Proof of Theorem umgran0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3524 . . 3  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P V  \  { (/) } )
2 umgraf 24735 . . . . 5  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
32ffvelrnda 6009 . . . 4  |-  ( ( ( V UMGrph  E  /\  E  Fn  A )  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
433impa 1192 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
51, 4sseldi 3440 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  ( ~P V  \  { (/)
} ) )
6 eldifsni 4098 . 2  |-  ( ( E `  F )  e.  ( ~P V  \  { (/) } )  -> 
( E `  F
)  =/=  (/) )
75, 6syl 17 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    e. wcel 1842    =/= wne 2598   {crab 2758    \ cdif 3411   (/)c0 3738   ~Pcpw 3955   {csn 3972   class class class wbr 4395    Fn wfn 5564   ` cfv 5569    <_ cle 9659   2c2 10626   #chash 12452   UMGrph cumg 24729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fv 5577  df-umgra 24730
This theorem is referenced by:  umgraex  24740
  Copyright terms: Public domain W3C validator