MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgraf Structured version   Unicode version

Theorem umgraf 23389
Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgraf  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
Distinct variable groups:    x, A    x, E    x, V

Proof of Theorem umgraf
StepHypRef Expression
1 umgraf2 23388 . . 3  |-  ( V UMGrph  E  ->  E : dom  E --> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
2 fndm 5610 . . . 4  |-  ( E  Fn  A  ->  dom  E  =  A )
32feq2d 5647 . . 3  |-  ( E  Fn  A  ->  ( E : dom  E --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  <->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
41, 3syl5ibcom 220 . 2  |-  ( V UMGrph  E  ->  ( E  Fn  A  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } ) )
54imp 429 1  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   {crab 2799    \ cdif 3425   (/)c0 3737   ~Pcpw 3960   {csn 3977   class class class wbr 4392   dom cdm 4940    Fn wfn 5513   -->wf 5514   ` cfv 5518    <_ cle 9522   2c2 10474   #chash 12206   UMGrph cumg 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pr 4631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-br 4393  df-opab 4451  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-fun 5520  df-fn 5521  df-f 5522  df-umgra 23384
This theorem is referenced by:  umgrass  23390  umgran0  23391  umgrale  23392  umgraun  23399
  Copyright terms: Public domain W3C validator