MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgraex Structured version   Unicode version

Theorem umgraex 23999
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgraex  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Distinct variable groups:    x, y, A    x, E, y    x, F, y    x, V, y

Proof of Theorem umgraex
StepHypRef Expression
1 umgran0 23996 . . . 4  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )
2 n0 3794 . . . 4  |-  ( ( E `  F )  =/=  (/)  <->  E. x  x  e.  ( E `  F
) )
31, 2sylib 196 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  x  e.  ( E `  F ) )
4 umgrass 23995 . . . . . . 7  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
54sselda 3504 . . . . . 6  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  x  e.  V )
65adantr 465 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  x  e.  V )
7 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( ( E `  F )  \  {
x } )  =  (/) )
8 ssdif0 3885 . . . . . . . . . 10  |-  ( ( E `  F ) 
C_  { x }  <->  ( ( E `  F
)  \  { x } )  =  (/) )
97, 8sylibr 212 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  C_  { x } )
10 simpr 461 . . . . . . . . . . 11  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  x  e.  ( E `  F ) )
1110snssd 4172 . . . . . . . . . 10  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  { x }  C_  ( E `  F ) )
1211adantr 465 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  { x }  C_  ( E `  F ) )
139, 12eqssd 3521 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  =  { x } )
14 preq2 4107 . . . . . . . . . . 11  |-  ( y  =  x  ->  { x ,  y }  =  { x ,  x } )
15 dfsn2 4040 . . . . . . . . . . 11  |-  { x }  =  { x ,  x }
1614, 15syl6eqr 2526 . . . . . . . . . 10  |-  ( y  =  x  ->  { x ,  y }  =  { x } )
1716eqeq2d 2481 . . . . . . . . 9  |-  ( y  =  x  ->  (
( E `  F
)  =  { x ,  y }  <->  ( E `  F )  =  {
x } ) )
1817rspcev 3214 . . . . . . . 8  |-  ( ( x  e.  V  /\  ( E `  F )  =  { x }
)  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
196, 13, 18syl2anc 661 . . . . . . 7  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
20 n0 3794 . . . . . . . 8  |-  ( ( ( E `  F
)  \  { x } )  =/=  (/)  <->  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )
214adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  C_  V
)
22 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  ( ( E `  F
)  \  { x } ) )
2322eldifad 3488 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  ( E `  F ) )
2421, 23sseldd 3505 . . . . . . . . . . . . 13  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  V
)
25 umgrafi 23998 . . . . . . . . . . . . . . . 16  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  Fin )
2625adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  e.  Fin )
27 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  x  e.  ( E `  F ) )
28 prssi 4183 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( E `
 F )  /\  y  e.  ( E `  F ) )  ->  { x ,  y }  C_  ( E `  F ) )
2927, 23, 28syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  C_  ( E `  F )
)
30 fvex 5874 . . . . . . . . . . . . . . . . 17  |-  ( E `
 F )  e. 
_V
31 ssdomg 7558 . . . . . . . . . . . . . . . . 17  |-  ( ( E `  F )  e.  _V  ->  ( { x ,  y }  C_  ( E `  F )  ->  { x ,  y }  ~<_  ( E `
 F ) ) )
3230, 29, 31mpsyl 63 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  ~<_  ( E `
 F ) )
33 umgrale 23997 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( # `  ( E `  F )
)  <_  2 )
3433adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  ( E `  F )
)  <_  2 )
35 eldifsni 4153 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( ( E `
 F )  \  { x } )  ->  y  =/=  x
)
3635ad2antll 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  =/=  x
)
3736necomd 2738 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  x  =/=  y
)
38 vex 3116 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
39 vex 3116 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
40 hashprg 12424 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x  =/=  y  <->  (
# `  { x ,  y } )  =  2 ) )
4138, 39, 40mp2an 672 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =/=  y  <->  ( # `  {
x ,  y } )  =  2 )
4237, 41sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  {
x ,  y } )  =  2 )
4334, 42breqtrrd 4473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  ( E `  F )
)  <_  ( # `  {
x ,  y } ) )
44 prfi 7791 . . . . . . . . . . . . . . . . . 18  |-  { x ,  y }  e.  Fin
45 hashdom 12411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y }  e.  Fin )  -> 
( ( # `  ( E `  F )
)  <_  ( # `  {
x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
4626, 44, 45sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( ( # `  ( E `  F
) )  <_  ( # `
 { x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
4743, 46mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  ~<_  { x ,  y } )
48 sbth 7634 . . . . . . . . . . . . . . . 16  |-  ( ( { x ,  y }  ~<_  ( E `  F )  /\  ( E `  F )  ~<_  { x ,  y } )  ->  { x ,  y }  ~~  ( E `  F ) )
4932, 47, 48syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  ~~  ( E `  F )
)
50 fisseneq 7728 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y } 
C_  ( E `  F )  /\  {
x ,  y } 
~~  ( E `  F ) )  ->  { x ,  y }  =  ( E `
 F ) )
5126, 29, 49, 50syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  =  ( E `  F ) )
5251eqcomd 2475 . . . . . . . . . . . . 13  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  =  {
x ,  y } )
5324, 52jca 532 . . . . . . . . . . . 12  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( y  e.  V  /\  ( E `
 F )  =  { x ,  y } ) )
5453expr 615 . . . . . . . . . . 11  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( y  e.  ( ( E `  F )  \  {
x } )  -> 
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) ) )
5554eximdv 1686 . . . . . . . . . 10  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( E. y  y  e.  (
( E `  F
)  \  { x } )  ->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) ) )
5655imp 429 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
57 df-rex 2820 . . . . . . . . 9  |-  ( E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
5856, 57sylibr 212 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
5920, 58sylan2b 475 . . . . . . 7  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =/=  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
6019, 59pm2.61dane 2785 . . . . . 6  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
615, 60jca 532 . . . . 5  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  {
x ,  y } ) )
6261ex 434 . . . 4  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( x  e.  ( E `  F
)  ->  ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  {
x ,  y } ) ) )
6362eximdv 1686 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E. x  x  e.  ( E `  F )  ->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) ) )
643, 63mpd 15 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x
( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
65 df-rex 2820 . 2  |-  ( E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
6664, 65sylibr 212 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   E.wrex 2815   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   {csn 4027   {cpr 4029   class class class wbr 4447    Fn wfn 5581   ` cfv 5586    ~~ cen 7510    ~<_ cdom 7511   Fincfn 7513    <_ cle 9625   2c2 10581   #chash 12369   UMGrph cumg 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-hash 12370  df-umgra 23989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator