MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgra1 Structured version   Unicode version

Theorem umgra1 23279
Description: The graph with one edge. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
umgra1  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  V UMGrph  { <. A ,  { B ,  C } >. } )

Proof of Theorem umgra1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . . . 6  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  A  e.  X )
2 prex 4553 . . . . . 6  |-  { B ,  C }  e.  _V
3 f1osng 5698 . . . . . 6  |-  ( ( A  e.  X  /\  { B ,  C }  e.  _V )  ->  { <. A ,  { B ,  C } >. } : { A } -1-1-onto-> { { B ,  C } } )
41, 2, 3sylancl 662 . . . . 5  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { <. A ,  { B ,  C } >. } : { A }
-1-1-onto-> { { B ,  C } } )
5 f1of 5660 . . . . 5  |-  ( {
<. A ,  { B ,  C } >. } : { A } -1-1-onto-> { { B ,  C } }  ->  { <. A ,  { B ,  C } >. } : { A } --> { { B ,  C } } )
64, 5syl 16 . . . 4  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { <. A ,  { B ,  C } >. } : { A }
--> { { B ,  C } } )
7 prssi 4048 . . . . . . . . 9  |-  ( ( B  e.  V  /\  C  e.  V )  ->  { B ,  C }  C_  V )
87adantl 466 . . . . . . . 8  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { B ,  C }  C_  V )
92elpw 3885 . . . . . . . 8  |-  ( { B ,  C }  e.  ~P V  <->  { B ,  C }  C_  V
)
108, 9sylibr 212 . . . . . . 7  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { B ,  C }  e.  ~P V )
11 prnzg 4014 . . . . . . . 8  |-  ( B  e.  V  ->  { B ,  C }  =/=  (/) )
1211ad2antrl 727 . . . . . . 7  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { B ,  C }  =/=  (/) )
13 eldifsn 4019 . . . . . . 7  |-  ( { B ,  C }  e.  ( ~P V  \  { (/) } )  <->  ( { B ,  C }  e.  ~P V  /\  { B ,  C }  =/=  (/) ) )
1410, 12, 13sylanbrc 664 . . . . . 6  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { B ,  C }  e.  ( ~P V  \  { (/) } ) )
15 hashprlei 12196 . . . . . . . 8  |-  ( { B ,  C }  e.  Fin  /\  ( # `  { B ,  C } )  <_  2
)
1615simpri 462 . . . . . . 7  |-  ( # `  { B ,  C } )  <_  2
1716a1i 11 . . . . . 6  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  -> 
( # `  { B ,  C } )  <_ 
2 )
18 fveq2 5710 . . . . . . . 8  |-  ( x  =  { B ,  C }  ->  ( # `  x )  =  (
# `  { B ,  C } ) )
1918breq1d 4321 . . . . . . 7  |-  ( x  =  { B ,  C }  ->  ( (
# `  x )  <_  2  <->  ( # `  { B ,  C }
)  <_  2 ) )
2019elrab 3136 . . . . . 6  |-  ( { B ,  C }  e.  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  ( { B ,  C }  e.  ( ~P V  \  { (/) } )  /\  ( # `  { B ,  C } )  <_ 
2 ) )
2114, 17, 20sylanbrc 664 . . . . 5  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { B ,  C }  e.  { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
2221snssd 4037 . . . 4  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { { B ,  C } }  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
23 fss 5586 . . . 4  |-  ( ( { <. A ,  { B ,  C } >. } : { A }
--> { { B ,  C } }  /\  { { B ,  C } }  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)  ->  { <. A ,  { B ,  C } >. } : { A }
--> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
246, 22, 23syl2anc 661 . . 3  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { <. A ,  { B ,  C } >. } : { A }
--> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  <_  2 } )
25 fdm 5582 . . . . 5  |-  ( {
<. A ,  { B ,  C } >. } : { A } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  dom  { <. A ,  { B ,  C } >. }  =  { A } )
2624, 25syl 16 . . . 4  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  dom  { <. A ,  { B ,  C } >. }  =  { A } )
2726feq2d 5566 . . 3  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  -> 
( { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  <->  {
<. A ,  { B ,  C } >. } : { A } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
2824, 27mpbird 232 . 2  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
29 simpll 753 . . 3  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  V  e.  W )
30 snex 4552 . . 3  |-  { <. A ,  { B ,  C } >. }  e.  _V
31 isumgra 23268 . . 3  |-  ( ( V  e.  W  /\  {
<. A ,  { B ,  C } >. }  e.  _V )  ->  ( V UMGrph  { <. A ,  { B ,  C } >. }  <->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
3229, 30, 31sylancl 662 . 2  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  -> 
( V UMGrph  { <. A ,  { B ,  C } >. }  <->  { <. A ,  { B ,  C } >. } : dom  { <. A ,  { B ,  C } >. } --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
3328, 32mpbird 232 1  |-  ( ( ( V  e.  W  /\  A  e.  X
)  /\  ( B  e.  V  /\  C  e.  V ) )  ->  V UMGrph  { <. A ,  { B ,  C } >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   {crab 2738   _Vcvv 2991    \ cdif 3344    C_ wss 3347   (/)c0 3656   ~Pcpw 3879   {csn 3896   {cpr 3898   <.cop 3902   class class class wbr 4311   dom cdm 4859   -->wf 5433   -1-1-onto->wf1o 5436   ` cfv 5437   Fincfn 7329    <_ cle 9438   2c2 10390   #chash 12122   UMGrph cumg 23265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-recs 6851  df-rdg 6885  df-1o 6939  df-oadd 6943  df-er 7120  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-card 8128  df-cda 8356  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-2 10399  df-n0 10599  df-z 10666  df-uz 10881  df-fz 11457  df-hash 12123  df-umgra 23266
This theorem is referenced by:  eupap1  23616  eupath2lem3  23619  vdegp1ai  23624  vdegp1bi  23625
  Copyright terms: Public domain W3C validator