MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmval Structured version   Unicode version

Theorem ulmval 22504
Description: Express the predicate: The sequence of functions  F converges uniformly to  G on  S. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmval  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
Distinct variable groups:    j, k, n, x, z, F    j, G, k, n, x, z    S, j, k, n, x, z    n, V
Allowed substitution hints:    V( x, z, j, k)

Proof of Theorem ulmval
Dummy variables  f 
y  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmrel 22502 . . . 4  |-  Rel  ( ~~> u `  S )
2 brrelex12 5031 . . . 4  |-  ( ( Rel  ( ~~> u `  S )  /\  F
( ~~> u `  S
) G )  -> 
( F  e.  _V  /\  G  e.  _V )
)
31, 2mpan 670 . . 3  |-  ( F ( ~~> u `  S
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
43a1i 11 . 2  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  -> 
( F  e.  _V  /\  G  e.  _V )
) )
5 3simpa 988 . . . 4  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  G : S --> CC ) )
6 fvex 5869 . . . . . . 7  |-  ( ZZ>= `  n )  e.  _V
7 fex 6126 . . . . . . 7  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  ( ZZ>= `  n )  e.  _V )  ->  F  e.  _V )
86, 7mpan2 671 . . . . . 6  |-  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  ->  F  e.  _V )
98a1i 11 . . . . 5  |-  ( S  e.  V  ->  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  ->  F  e.  _V ) )
10 fex 6126 . . . . . 6  |-  ( ( G : S --> CC  /\  S  e.  V )  ->  G  e.  _V )
1110expcom 435 . . . . 5  |-  ( S  e.  V  ->  ( G : S --> CC  ->  G  e.  _V ) )
129, 11anim12d 563 . . . 4  |-  ( S  e.  V  ->  (
( F : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC )  ->  ( F  e.  _V  /\  G  e.  _V ) ) )
135, 12syl5 32 . . 3  |-  ( S  e.  V  ->  (
( F : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  ->  ( F  e.  _V  /\  G  e. 
_V ) ) )
1413rexlimdvw 2953 . 2  |-  ( S  e.  V  ->  ( E. n  e.  ZZ  ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  ( F  e.  _V  /\  G  e. 
_V ) ) )
15 elex 3117 . . . . . 6  |-  ( S  e.  V  ->  S  e.  _V )
16 simpr1 997 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  f : ( ZZ>= `  n
) --> ( CC  ^m  S ) )
17 uzssz 11092 . . . . . . . . . . . . 13  |-  ( ZZ>= `  n )  C_  ZZ
18 ovex 6302 . . . . . . . . . . . . . 14  |-  ( CC 
^m  S )  e. 
_V
19 zex 10864 . . . . . . . . . . . . . 14  |-  ZZ  e.  _V
20 elpm2r 7428 . . . . . . . . . . . . . 14  |-  ( ( ( ( CC  ^m  S )  e.  _V  /\  ZZ  e.  _V )  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  ( ZZ>= `  n
)  C_  ZZ )
)  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
2118, 19, 20mpanl12 682 . . . . . . . . . . . . 13  |-  ( ( f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  ( ZZ>= `  n )  C_  ZZ )  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
2216, 17, 21sylancl 662 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  f  e.  ( ( CC  ^m  S )  ^pm  ZZ ) )
23 simpr2 998 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  y : S --> CC )
24 cnex 9564 . . . . . . . . . . . . . 14  |-  CC  e.  _V
25 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  S  e.  V )
26 elmapg 7425 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  S  e.  V )  ->  ( y  e.  ( CC  ^m  S )  <-> 
y : S --> CC ) )
2724, 25, 26sylancr 663 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  (
y  e.  ( CC 
^m  S )  <->  y : S
--> CC ) )
2823, 27mpbird 232 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  y  e.  ( CC  ^m  S
) )
2922, 28jca 532 . . . . . . . . . . 11  |-  ( ( S  e.  V  /\  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )  ->  (
f  e.  ( ( CC  ^m  S ) 
^pm  ZZ )  /\  y  e.  ( CC  ^m  S
) ) )
3029ex 434 . . . . . . . . . 10  |-  ( S  e.  V  ->  (
( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  ->  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) ) )
3130rexlimdvw 2953 . . . . . . . . 9  |-  ( S  e.  V  ->  ( E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  ->  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) ) )
3231ssopab2dv 4771 . . . . . . . 8  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  C_  {
<. f ,  y >.  |  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) } )
33 df-xp 5000 . . . . . . . 8  |-  ( ( ( CC  ^m  S
)  ^pm  ZZ )  X.  ( CC  ^m  S
) )  =  { <. f ,  y >.  |  ( f  e.  ( ( CC  ^m  S )  ^pm  ZZ )  /\  y  e.  ( CC  ^m  S ) ) }
3432, 33syl6sseqr 3546 . . . . . . 7  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  C_  ( ( ( CC 
^m  S )  ^pm  ZZ )  X.  ( CC 
^m  S ) ) )
35 ovex 6302 . . . . . . . . 9  |-  ( ( CC  ^m  S ) 
^pm  ZZ )  e.  _V
3635, 18xpex 6706 . . . . . . . 8  |-  ( ( ( CC  ^m  S
)  ^pm  ZZ )  X.  ( CC  ^m  S
) )  e.  _V
3736ssex 4586 . . . . . . 7  |-  ( {
<. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  C_  (
( ( CC  ^m  S )  ^pm  ZZ )  X.  ( CC  ^m  S ) )  ->  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  e.  _V )
3834, 37syl 16 . . . . . 6  |-  ( S  e.  V  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  e.  _V )
39 oveq2 6285 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( CC  ^m  s )  =  ( CC  ^m  S
) )
40 feq3 5708 . . . . . . . . . . 11  |-  ( ( CC  ^m  s )  =  ( CC  ^m  S )  ->  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  <->  f :
( ZZ>= `  n ) --> ( CC  ^m  S ) ) )
4139, 40syl 16 . . . . . . . . . 10  |-  ( s  =  S  ->  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  <->  f :
( ZZ>= `  n ) --> ( CC  ^m  S ) ) )
42 feq2 5707 . . . . . . . . . 10  |-  ( s  =  S  ->  (
y : s --> CC  <->  y : S --> CC ) )
43 raleq 3053 . . . . . . . . . . . 12  |-  ( s  =  S  ->  ( A. z  e.  s 
( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) )
4443rexralbidv 2976 . . . . . . . . . . 11  |-  ( s  =  S  ->  ( E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  s  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x  <->  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `  k
) `  z )  -  ( y `  z ) ) )  <  x ) )
4544ralbidv 2898 . . . . . . . . . 10  |-  ( s  =  S  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `  k
) `  z )  -  ( y `  z ) ) )  <  x ) )
4641, 42, 453anbi123d 1294 . . . . . . . . 9  |-  ( s  =  S  ->  (
( f : (
ZZ>= `  n ) --> ( CC  ^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x )  <->  ( f : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) ) )
4746rexbidv 2968 . . . . . . . 8  |-  ( s  =  S  ->  ( E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x )  <->  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) ) )
4847opabbidv 4505 . . . . . . 7  |-  ( s  =  S  ->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
49 df-ulm 22501 . . . . . . 7  |-  ~~> u  =  ( s  e.  _V  |->  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  s
)  /\  y :
s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } )
5048, 49fvmptg 5941 . . . . . 6  |-  ( ( S  e.  _V  /\  {
<. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }  e.  _V )  ->  ( ~~> u `  S )  =  { <. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
5115, 38, 50syl2anc 661 . . . . 5  |-  ( S  e.  V  ->  ( ~~> u `  S )  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } )
5251breqd 4453 . . . 4  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  F { <. f ,  y >.  |  E. n  e.  ZZ  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) } G ) )
53 simpl 457 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  f  =  F )
5453feq1d 5710 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( f : (
ZZ>= `  n ) --> ( CC  ^m  S )  <-> 
F : ( ZZ>= `  n ) --> ( CC 
^m  S ) ) )
55 simpr 461 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  y  =  G )
5655feq1d 5710 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( y : S --> CC 
<->  G : S --> CC ) )
5753fveq1d 5861 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  y  =  G )  ->  ( f `  k
)  =  ( F `
 k ) )
5857fveq1d 5861 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( f `  k ) `  z
)  =  ( ( F `  k ) `
 z ) )
5955fveq1d 5861 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  G )  ->  ( y `  z
)  =  ( G `
 z ) )
6058, 59oveq12d 6295 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( ( f `
 k ) `  z )  -  (
y `  z )
)  =  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )
6160fveq2d 5863 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  G )  ->  ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  =  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) )
6261breq1d 4452 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6362ralbidv 2898 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  G )  ->  ( A. z  e.  S  ( abs `  (
( ( f `  k ) `  z
)  -  ( y `
 z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6463rexralbidv 2976 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  G )  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x  <->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
6564ralbidv 2898 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  G )  ->  ( A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) )
6654, 56, 653anbi123d 1294 . . . . . 6  |-  ( ( f  =  F  /\  y  =  G )  ->  ( ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  <->  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
6766rexbidv 2968 . . . . 5  |-  ( ( f  =  F  /\  y  =  G )  ->  ( E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
)  <->  E. n  e.  ZZ  ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
68 eqid 2462 . . . . 5  |-  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) }  =  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( f `
 k ) `  z )  -  (
y `  z )
) )  <  x
) }
6967, 68brabga 4756 . . . 4  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  y : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } G  <->  E. n  e.  ZZ  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
7052, 69sylan9bb 699 . . 3  |-  ( ( S  e.  V  /\  ( F  e.  _V  /\  G  e.  _V )
)  ->  ( F
( ~~> u `  S
) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
7170ex 434 . 2  |-  ( S  e.  V  ->  (
( F  e.  _V  /\  G  e.  _V )  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) ) )
724, 14, 71pm5.21ndd 354 1  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   E.wrex 2810   _Vcvv 3108    C_ wss 3471   class class class wbr 4442   {copab 4499    X. cxp 4992   Rel wrel 4999   -->wf 5577   ` cfv 5581  (class class class)co 6277    ^m cmap 7412    ^pm cpm 7413   CCcc 9481    < clt 9619    - cmin 9796   ZZcz 10855   ZZ>=cuz 11073   RR+crp 11211   abscabs 13019   ~~> uculm 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-map 7414  df-pm 7415  df-neg 9799  df-z 10856  df-uz 11074  df-ulm 22501
This theorem is referenced by:  ulmcl  22505  ulmf  22506  ulm2  22509
  Copyright terms: Public domain W3C validator