MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmshft Structured version   Unicode version

Theorem ulmshft 22652
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
ulmshft.z  |-  Z  =  ( ZZ>= `  M )
ulmshft.w  |-  W  =  ( ZZ>= `  ( M  +  K ) )
ulmshft.m  |-  ( ph  ->  M  e.  ZZ )
ulmshft.k  |-  ( ph  ->  K  e.  ZZ )
ulmshft.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulmshft.h  |-  ( ph  ->  H  =  ( n  e.  W  |->  ( F `
 ( n  -  K ) ) ) )
Assertion
Ref Expression
ulmshft  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  H ( ~~> u `  S ) G ) )
Distinct variable groups:    ph, n    n, W    n, F    n, K    S, n
Allowed substitution hints:    G( n)    H( n)    M( n)    Z( n)

Proof of Theorem ulmshft
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 ulmshft.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 ulmshft.w . . 3  |-  W  =  ( ZZ>= `  ( M  +  K ) )
3 ulmshft.m . . 3  |-  ( ph  ->  M  e.  ZZ )
4 ulmshft.k . . 3  |-  ( ph  ->  K  e.  ZZ )
5 ulmshft.f . . 3  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
6 ulmshft.h . . 3  |-  ( ph  ->  H  =  ( n  e.  W  |->  ( F `
 ( n  -  K ) ) ) )
71, 2, 3, 4, 5, 6ulmshftlem 22651 . 2  |-  ( ph  ->  ( F ( ~~> u `  S ) G  ->  H ( ~~> u `  S ) G ) )
8 eqid 2467 . . 3  |-  ( ZZ>= `  ( ( M  +  K )  +  -u K ) )  =  ( ZZ>= `  ( ( M  +  K )  +  -u K ) )
93, 4zaddcld 10982 . . 3  |-  ( ph  ->  ( M  +  K
)  e.  ZZ )
104znegcld 10980 . . 3  |-  ( ph  -> 
-u K  e.  ZZ )
115adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  W )  ->  F : Z --> ( CC  ^m  S ) )
123adantr 465 . . . . . . . 8  |-  ( (
ph  /\  n  e.  W )  ->  M  e.  ZZ )
134adantr 465 . . . . . . . 8  |-  ( (
ph  /\  n  e.  W )  ->  K  e.  ZZ )
14 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  W )  ->  n  e.  W )
1514, 2syl6eleq 2565 . . . . . . . 8  |-  ( (
ph  /\  n  e.  W )  ->  n  e.  ( ZZ>= `  ( M  +  K ) ) )
16 eluzsub 11123 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  n  e.  ( ZZ>= `  ( M  +  K ) ) )  ->  ( n  -  K )  e.  (
ZZ>= `  M ) )
1712, 13, 15, 16syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  n  e.  W )  ->  (
n  -  K )  e.  ( ZZ>= `  M
) )
1817, 1syl6eleqr 2566 . . . . . 6  |-  ( (
ph  /\  n  e.  W )  ->  (
n  -  K )  e.  Z )
1911, 18ffvelrnd 6033 . . . . 5  |-  ( (
ph  /\  n  e.  W )  ->  ( F `  ( n  -  K ) )  e.  ( CC  ^m  S
) )
20 eqid 2467 . . . . 5  |-  ( n  e.  W  |->  ( F `
 ( n  -  K ) ) )  =  ( n  e.  W  |->  ( F `  ( n  -  K
) ) )
2119, 20fmptd 6056 . . . 4  |-  ( ph  ->  ( n  e.  W  |->  ( F `  (
n  -  K ) ) ) : W --> ( CC  ^m  S ) )
226feq1d 5723 . . . 4  |-  ( ph  ->  ( H : W --> ( CC  ^m  S )  <-> 
( n  e.  W  |->  ( F `  (
n  -  K ) ) ) : W --> ( CC  ^m  S ) ) )
2321, 22mpbird 232 . . 3  |-  ( ph  ->  H : W --> ( CC 
^m  S ) )
24 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  Z )  ->  m  e.  Z )
2524, 1syl6eleq 2565 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  Z )  ->  m  e.  ( ZZ>= `  M )
)
26 eluzelz 11103 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  ZZ )
2725, 26syl 16 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  Z )  ->  m  e.  ZZ )
2827zcnd 10979 . . . . . . . 8  |-  ( (
ph  /\  m  e.  Z )  ->  m  e.  CC )
294zcnd 10979 . . . . . . . . 9  |-  ( ph  ->  K  e.  CC )
3029adantr 465 . . . . . . . 8  |-  ( (
ph  /\  m  e.  Z )  ->  K  e.  CC )
3128, 30subnegd 9949 . . . . . . 7  |-  ( (
ph  /\  m  e.  Z )  ->  (
m  -  -u K
)  =  ( m  +  K ) )
3231fveq2d 5876 . . . . . 6  |-  ( (
ph  /\  m  e.  Z )  ->  ( H `  ( m  -  -u K ) )  =  ( H `  ( m  +  K
) ) )
336adantr 465 . . . . . . 7  |-  ( (
ph  /\  m  e.  Z )  ->  H  =  ( n  e.  W  |->  ( F `  ( n  -  K
) ) ) )
3433fveq1d 5874 . . . . . 6  |-  ( (
ph  /\  m  e.  Z )  ->  ( H `  ( m  +  K ) )  =  ( ( n  e.  W  |->  ( F `  ( n  -  K
) ) ) `  ( m  +  K
) ) )
354adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  Z )  ->  K  e.  ZZ )
36 eluzadd 11122 . . . . . . . . . 10  |-  ( ( m  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  (
m  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
3725, 35, 36syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  Z )  ->  (
m  +  K )  e.  ( ZZ>= `  ( M  +  K )
) )
3837, 2syl6eleqr 2566 . . . . . . . 8  |-  ( (
ph  /\  m  e.  Z )  ->  (
m  +  K )  e.  W )
39 oveq1 6302 . . . . . . . . . 10  |-  ( n  =  ( m  +  K )  ->  (
n  -  K )  =  ( ( m  +  K )  -  K ) )
4039fveq2d 5876 . . . . . . . . 9  |-  ( n  =  ( m  +  K )  ->  ( F `  ( n  -  K ) )  =  ( F `  (
( m  +  K
)  -  K ) ) )
41 fvex 5882 . . . . . . . . 9  |-  ( F `
 ( ( m  +  K )  -  K ) )  e. 
_V
4240, 20, 41fvmpt 5957 . . . . . . . 8  |-  ( ( m  +  K )  e.  W  ->  (
( n  e.  W  |->  ( F `  (
n  -  K ) ) ) `  (
m  +  K ) )  =  ( F `
 ( ( m  +  K )  -  K ) ) )
4338, 42syl 16 . . . . . . 7  |-  ( (
ph  /\  m  e.  Z )  ->  (
( n  e.  W  |->  ( F `  (
n  -  K ) ) ) `  (
m  +  K ) )  =  ( F `
 ( ( m  +  K )  -  K ) ) )
4428, 30pncand 9943 . . . . . . . 8  |-  ( (
ph  /\  m  e.  Z )  ->  (
( m  +  K
)  -  K )  =  m )
4544fveq2d 5876 . . . . . . 7  |-  ( (
ph  /\  m  e.  Z )  ->  ( F `  ( (
m  +  K )  -  K ) )  =  ( F `  m ) )
4643, 45eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  m  e.  Z )  ->  (
( n  e.  W  |->  ( F `  (
n  -  K ) ) ) `  (
m  +  K ) )  =  ( F `
 m ) )
4732, 34, 463eqtrd 2512 . . . . 5  |-  ( (
ph  /\  m  e.  Z )  ->  ( H `  ( m  -  -u K ) )  =  ( F `  m ) )
4847mpteq2dva 4539 . . . 4  |-  ( ph  ->  ( m  e.  Z  |->  ( H `  (
m  -  -u K
) ) )  =  ( m  e.  Z  |->  ( F `  m
) ) )
493zcnd 10979 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
5010zcnd 10979 . . . . . . . . 9  |-  ( ph  -> 
-u K  e.  CC )
5149, 29, 50addassd 9630 . . . . . . . 8  |-  ( ph  ->  ( ( M  +  K )  +  -u K )  =  ( M  +  ( K  +  -u K ) ) )
5229negidd 9932 . . . . . . . . 9  |-  ( ph  ->  ( K  +  -u K )  =  0 )
5352oveq2d 6311 . . . . . . . 8  |-  ( ph  ->  ( M  +  ( K  +  -u K
) )  =  ( M  +  0 ) )
5449addid1d 9791 . . . . . . . 8  |-  ( ph  ->  ( M  +  0 )  =  M )
5551, 53, 543eqtrd 2512 . . . . . . 7  |-  ( ph  ->  ( ( M  +  K )  +  -u K )  =  M )
5655fveq2d 5876 . . . . . 6  |-  ( ph  ->  ( ZZ>= `  ( ( M  +  K )  +  -u K ) )  =  ( ZZ>= `  M
) )
5756, 1syl6eqr 2526 . . . . 5  |-  ( ph  ->  ( ZZ>= `  ( ( M  +  K )  +  -u K ) )  =  Z )
5857mpteq1d 4534 . . . 4  |-  ( ph  ->  ( m  e.  (
ZZ>= `  ( ( M  +  K )  + 
-u K ) ) 
|->  ( H `  (
m  -  -u K
) ) )  =  ( m  e.  Z  |->  ( H `  (
m  -  -u K
) ) ) )
595feqmptd 5927 . . . 4  |-  ( ph  ->  F  =  ( m  e.  Z  |->  ( F `
 m ) ) )
6048, 58, 593eqtr4rd 2519 . . 3  |-  ( ph  ->  F  =  ( m  e.  ( ZZ>= `  (
( M  +  K
)  +  -u K
) )  |->  ( H `
 ( m  -  -u K ) ) ) )
612, 8, 9, 10, 23, 60ulmshftlem 22651 . 2  |-  ( ph  ->  ( H ( ~~> u `  S ) G  ->  F ( ~~> u `  S ) G ) )
627, 61impbid 191 1  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  H ( ~~> u `  S ) G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4453    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   CCcc 9502   0cc0 9504    + caddc 9507    - cmin 9817   -ucneg 9818   ZZcz 10876   ZZ>=cuz 11094   ~~> uculm 22638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-ulm 22639
This theorem is referenced by:  pserdvlem2  22690
  Copyright terms: Public domain W3C validator