MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcl Structured version   Unicode version

Theorem ulmcl 22510
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmcl  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )

Proof of Theorem ulmcl
Dummy variables  j 
k  n  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmscl 22508 . . . 4  |-  ( F ( ~~> u `  S
) G  ->  S  e.  _V )
2 ulmval 22509 . . . 4  |-  ( S  e.  _V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
31, 2syl 16 . . 3  |-  ( F ( ~~> u `  S
) G  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
43ibi 241 . 2  |-  ( F ( ~~> u `  S
) G  ->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
5 simp2 997 . . 3  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  G : S
--> CC )
65rexlimivw 2952 . 2  |-  ( E. n  e.  ZZ  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  ->  G : S
--> CC )
74, 6syl 16 1  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113   class class class wbr 4447   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   CCcc 9486    < clt 9624    - cmin 9801   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   abscabs 13026   ~~> uculm 22505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-pm 7420  df-neg 9804  df-z 10861  df-uz 11079  df-ulm 22506
This theorem is referenced by:  ulmi  22515  ulmclm  22516  ulmres  22517  ulmshftlem  22518  ulmuni  22521  ulmcau  22524  ulmss  22526  ulmbdd  22527  ulmcn  22528  ulmdvlem1  22529  ulmdvlem3  22531  ulmdv  22532  mbfulm  22535  iblulm  22536  itgulm  22537  itgulm2  22538  pserulm  22551  lgamgulmlem6  28216  lgamgulm2  28218
  Copyright terms: Public domain W3C validator