MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Unicode version

Theorem ulmbdd 22520
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z  |-  Z  =  ( ZZ>= `  M )
ulmbdd.m  |-  ( ph  ->  M  e.  ZZ )
ulmbdd.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulmbdd.b  |-  ( (
ph  /\  k  e.  Z )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x )
ulmbdd.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
Assertion
Ref Expression
ulmbdd  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
Distinct variable groups:    x, k,
z, F    k, G, x, z    ph, k, x, z    S, k, x, z   
k, M, z    k, Z, x, z
Allowed substitution hint:    M( x)

Proof of Theorem ulmbdd
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 ulmbdd.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 ulmbdd.f . . 3  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
4 eqidd 2461 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( F `  k ) `  z
)  =  ( ( F `  k ) `
 z ) )
5 eqidd 2461 . . 3  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
6 ulmbdd.u . . 3  |-  ( ph  ->  F ( ~~> u `  S ) G )
7 1rp 11213 . . . 4  |-  1  e.  RR+
87a1i 11 . . 3  |-  ( ph  ->  1  e.  RR+ )
91, 2, 3, 4, 5, 6, 8ulmi 22508 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
)
101r19.2uz 13133 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  1  ->  E. k  e.  Z  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )
11 ulmbdd.b . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x )
12 r19.26 2982 . . . . . . . . 9  |-  ( A. z  e.  S  (
( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  <->  ( A. z  e.  S  ( abs `  ( ( F `
 k ) `  z ) )  <_  x  /\  A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1 ) )
13 peano2re 9741 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
1413adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  (
x  +  1 )  e.  RR )
15 ulmcl 22503 . . . . . . . . . . . . . . . . 17  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
166, 15syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : S --> CC )
1716ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  G : S --> CC )
18 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
z  e.  S )
1917, 18ffvelrnd 6013 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( G `  z
)  e.  CC )
2019abscld 13216 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  e.  RR )
213ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  F : Z --> ( CC 
^m  S ) )
22 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
k  e.  Z )
2321, 22ffvelrnd 6013 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( F `  k
)  e.  ( CC 
^m  S ) )
24 elmapi 7430 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2523, 24syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( F `  k
) : S --> CC )
2625, 18ffvelrnd 6013 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( F `  k ) `  z
)  e.  CC )
2726abscld 13216 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( F `  k
) `  z )
)  e.  RR )
2819, 26subcld 9919 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( G `  z )  -  (
( F `  k
) `  z )
)  e.  CC )
2928abscld 13216 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  e.  RR )
3027, 29readdcld 9612 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( F `  k
) `  z )
)  +  ( abs `  ( ( G `  z )  -  (
( F `  k
) `  z )
) ) )  e.  RR )
3114adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( x  +  1 )  e.  RR )
3226, 19pncan3d 9922 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( ( F `
 k ) `  z )  +  ( ( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  =  ( G `
 z ) )
3332fveq2d 5861 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  +  ( ( G `  z )  -  ( ( F `
 k ) `  z ) ) ) )  =  ( abs `  ( G `  z
) ) )
3426, 28abstrid 13236 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  +  ( ( G `  z )  -  ( ( F `
 k ) `  z ) ) ) )  <_  ( ( abs `  ( ( F `
 k ) `  z ) )  +  ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) ) ) )
3533, 34eqbrtrrd 4462 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  <_  ( ( abs `  ( ( F `
 k ) `  z ) )  +  ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) ) ) )
36 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  x  e.  RR )
37 1re 9584 . . . . . . . . . . . . . . 15  |-  1  e.  RR
3837a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
1  e.  RR )
39 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  x )
4019, 26abssubd 13233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  =  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) )
41 simprrr 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1 )
4240, 41eqbrtrd 4460 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1 )
43 ltle 9662 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 ) )
4429, 37, 43sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 ) )
4542, 44mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 )
4627, 29, 36, 38, 39, 45le2addd 10159 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( F `  k
) `  z )
)  +  ( abs `  ( ( G `  z )  -  (
( F `  k
) `  z )
) ) )  <_ 
( x  +  1 ) )
4720, 30, 31, 35, 46letrd 9727 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  <_  ( x  +  1 ) )
4847expr 615 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  z  e.  S
)  ->  ( (
( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  -> 
( abs `  ( G `  z )
)  <_  ( x  +  1 ) ) )
4948ralimdva 2865 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  ( x  + 
1 ) ) )
50 breq2 4444 . . . . . . . . . . . 12  |-  ( y  =  ( x  + 
1 )  ->  (
( abs `  ( G `  z )
)  <_  y  <->  ( abs `  ( G `  z
) )  <_  (
x  +  1 ) ) )
5150ralbidv 2896 . . . . . . . . . . 11  |-  ( y  =  ( x  + 
1 )  ->  ( A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y  <->  A. z  e.  S  ( abs `  ( G `  z
) )  <_  (
x  +  1 ) ) )
5251rspcev 3207 . . . . . . . . . 10  |-  ( ( ( x  +  1 )  e.  RR  /\  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  ( x  + 
1 ) )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y )
5314, 49, 52syl6an 545 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y ) )
5412, 53syl5bir 218 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  (
( A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y ) )
5554expd 436 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( abs `  ( ( F `  k ) `
 z ) )  <_  x  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
) )
5655rexlimdva 2948 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( E. x  e.  RR  A. z  e.  S  ( abs `  ( ( F `  k ) `
 z ) )  <_  x  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
) )
5711, 56mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
)
58 breq2 4444 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  ( G `  z )
)  <_  y  <->  ( abs `  ( G `  z
) )  <_  x
) )
5958ralbidv 2896 . . . . . 6  |-  ( y  =  x  ->  ( A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y  <->  A. z  e.  S  ( abs `  ( G `  z
) )  <_  x
) )
6059cbvrexv 3082 . . . . 5  |-  ( E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z ) )  <_ 
y  <->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
6157, 60syl6ib 226 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  x )
)
6261rexlimdva 2948 . . 3  |-  ( ph  ->  ( E. k  e.  Z  A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x ) )
6310, 62syl5 32 . 2  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  x )
)
649, 63mpd 15 1  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   class class class wbr 4440   -->wf 5575   ` cfv 5579  (class class class)co 6275    ^m cmap 7410   CCcc 9479   RRcr 9480   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9794   ZZcz 10853   ZZ>=cuz 11071   RR+crp 11209   abscabs 13017   ~~> uculm 22498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-ulm 22499
This theorem is referenced by:  mtestbdd  22527
  Copyright terms: Public domain W3C validator