MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm2 Structured version   Unicode version

Theorem ulm2 23338
Description: Simplify ulmval 23333 when  F and  G are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z  |-  Z  =  ( ZZ>= `  M )
ulm2.m  |-  ( ph  ->  M  e.  ZZ )
ulm2.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulm2.b  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( F `  k ) `  z
)  =  B )
ulm2.a  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  A )
ulm2.g  |-  ( ph  ->  G : S --> CC )
ulm2.s  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
ulm2  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
Distinct variable groups:    j, k, x, z, F    j, G, k, x, z    j, M, k, x, z    ph, j,
k, x, z    A, j, k, x    x, B    S, j, k, x, z   
j, Z, x
Allowed substitution hints:    A( z)    B( z, j, k)    V( x, z, j, k)    Z( z, k)

Proof of Theorem ulm2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 ulm2.s . . 3  |-  ( ph  ->  S  e.  V )
2 ulmval 23333 . . 3  |-  ( S  e.  V  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
31, 2syl 17 . 2  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) ) )
4 3anan12 995 . . . 4  |-  ( ( F : ( ZZ>= `  n ) --> ( CC 
^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  <->  ( G : S
--> CC  /\  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
5 ulm2.z . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
6 ulm2.f . . . . . . . . . . . 12  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
7 fdm 5750 . . . . . . . . . . . 12  |-  ( F : Z --> ( CC 
^m  S )  ->  dom  F  =  Z )
86, 7syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  Z )
9 fdm 5750 . . . . . . . . . . 11  |-  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  ->  dom  F  =  ( ZZ>= `  n
) )
108, 9sylan9req 2484 . . . . . . . . . 10  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  Z  =  ( ZZ>= `  n )
)
115, 10syl5eqr 2477 . . . . . . . . 9  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( ZZ>= `  M )  =  (
ZZ>= `  n ) )
12 ulm2.m . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
1312adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  M  e.  ZZ )
14 uz11 11188 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( ZZ>= `  M )  =  ( ZZ>= `  n
)  <->  M  =  n
) )
1513, 14syl 17 . . . . . . . . 9  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  ( ( ZZ>=
`  M )  =  ( ZZ>= `  n )  <->  M  =  n ) )
1611, 15mpbid 213 . . . . . . . 8  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  M  =  n )
1716eqcomd 2430 . . . . . . 7  |-  ( (
ph  /\  F :
( ZZ>= `  n ) --> ( CC  ^m  S ) )  ->  n  =  M )
18 fveq2 5881 . . . . . . . . . . 11  |-  ( n  =  M  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  M )
)
1918, 5syl6eqr 2481 . . . . . . . . . 10  |-  ( n  =  M  ->  ( ZZ>=
`  n )  =  Z )
2019feq2d 5733 . . . . . . . . 9  |-  ( n  =  M  ->  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  <->  F : Z
--> ( CC  ^m  S
) ) )
2120biimparc 489 . . . . . . . 8  |-  ( ( F : Z --> ( CC 
^m  S )  /\  n  =  M )  ->  F : ( ZZ>= `  n ) --> ( CC 
^m  S ) )
226, 21sylan 473 . . . . . . 7  |-  ( (
ph  /\  n  =  M )  ->  F : ( ZZ>= `  n
) --> ( CC  ^m  S ) )
2317, 22impbida 840 . . . . . 6  |-  ( ph  ->  ( F : (
ZZ>= `  n ) --> ( CC  ^m  S )  <-> 
n  =  M ) )
2423anbi1d 709 . . . . 5  |-  ( ph  ->  ( ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  <->  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) )
25 ulm2.g . . . . . 6  |-  ( ph  ->  G : S --> CC )
2625biantrurd 510 . . . . 5  |-  ( ph  ->  ( ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  <->  ( G : S
--> CC  /\  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) ) ) )
27 simp-4l 774 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ph )
28 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  =  M )  ->  n  =  M )
29 uzid 11180 . . . . . . . . . . . . . . . . . . . . 21  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
3012, 29syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
3130, 5syl6eleqr 2518 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  e.  Z )
3231adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  =  M )  ->  M  e.  Z )
3328, 32eqeltrd 2507 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  =  M )  ->  n  e.  Z )
345uztrn2 11183 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  Z  /\  j  e.  ( ZZ>= `  n ) )  -> 
j  e.  Z )
3533, 34sylan 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  =  M )  /\  j  e.  ( ZZ>= `  n )
)  ->  j  e.  Z )
365uztrn2 11183 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3735, 36sylan 473 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  =  M )  /\  j  e.  ( ZZ>=
`  n ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  Z
)
3837adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  k  e.  Z )
39 simpr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  z  e.  S )
40 ulm2.b . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( F `  k ) `  z
)  =  B )
4127, 38, 39, 40syl12anc 1262 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  =  B )
42 ulm2.a . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  A )
4327, 42sylancom 671 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ( G `  z )  =  A )
4441, 43oveq12d 6323 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ( (
( F `  k
) `  z )  -  ( G `  z ) )  =  ( B  -  A
) )
4544fveq2d 5885 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  =  ( abs `  ( B  -  A ) ) )
4645breq1d 4433 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  n  =  M )  /\  j  e.  (
ZZ>= `  n ) )  /\  k  e.  (
ZZ>= `  j ) )  /\  z  e.  S
)  ->  ( ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x  <->  ( abs `  ( B  -  A ) )  <  x ) )
4746ralbidva 2858 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  =  M )  /\  j  e.  ( ZZ>=
`  n ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x  <->  A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
4847ralbidva 2858 . . . . . . . 8  |-  ( ( ( ph  /\  n  =  M )  /\  j  e.  ( ZZ>= `  n )
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A
) )  <  x
) )
4948rexbidva 2933 . . . . . . 7  |-  ( (
ph  /\  n  =  M )  ->  ( E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x  <->  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
5049ralbidv 2861 . . . . . 6  |-  ( (
ph  /\  n  =  M )  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x ) )
5150pm5.32da 645 . . . . 5  |-  ( ph  ->  ( ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
)  <->  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x ) ) )
5224, 26, 513bitr3d 286 . . . 4  |-  ( ph  ->  ( ( G : S
--> CC  /\  ( F : ( ZZ>= `  n
) --> ( CC  ^m  S )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x
) )  <->  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x ) ) )
534, 52syl5bb 260 . . 3  |-  ( ph  ->  ( ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  <->  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x ) ) )
5453rexbidv 2936 . 2  |-  ( ph  ->  ( E. n  e.  ZZ  ( F :
( ZZ>= `  n ) --> ( CC  ^m  S )  /\  G : S --> CC  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  <->  E. n  e.  ZZ  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) ) )
5519rexeqdv 3029 . . . . 5  |-  ( n  =  M  ->  ( E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A
) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A
) )  <  x
) )
5655ralbidv 2861 . . . 4  |-  ( n  =  M  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A
) )  <  x
) )
5756ceqsrexv 3204 . . 3  |-  ( M  e.  ZZ  ->  ( E. n  e.  ZZ  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
5812, 57syl 17 . 2  |-  ( ph  ->  ( E. n  e.  ZZ  ( n  =  M  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
593, 54, 583bitrd 282 1  |-  ( ph  ->  ( F ( ~~> u `  S ) G  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( B  -  A ) )  <  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2771   E.wrex 2772   class class class wbr 4423   dom cdm 4853   -->wf 5597   ` cfv 5601  (class class class)co 6305    ^m cmap 7483   CCcc 9544    < clt 9682    - cmin 9867   ZZcz 10944   ZZ>=cuz 11166   RR+crp 11309   abscabs 13297   ~~> uculm 23329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-resscn 9603  ax-pre-lttri 9620  ax-pre-lttrn 9621
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-po 4774  df-so 4775  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7374  df-map 7485  df-pm 7486  df-en 7581  df-dom 7582  df-sdom 7583  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-neg 9870  df-z 10945  df-uz 11167  df-ulm 23330
This theorem is referenced by:  ulmi  23339  ulmclm  23340  ulmres  23341  ulmshftlem  23342  ulm0  23344  ulmcau  23348  ulmss  23350
  Copyright terms: Public domain W3C validator