MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgraun Structured version   Unicode version

Theorem uhgraun 24884
Description: The union of two (undirected) hypergraphs (with the same vertex set): If  <. V ,  E >. and 
<. V ,  F >. are hypergraphs, then  <. V ,  E  u.  F >. is a hypergraph (the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices), analogous to umgraun 24901. (Contributed by Alexander van der Vekens, 27-Dec-2017.)
Hypotheses
Ref Expression
uhgraun.e  |-  ( ph  ->  E  Fn  A )
uhgraun.f  |-  ( ph  ->  F  Fn  B )
uhgraun.i  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
uhgraun.ge  |-  ( ph  ->  V UHGrph  E )
uhgraun.gf  |-  ( ph  ->  V UHGrph  F )
Assertion
Ref Expression
uhgraun  |-  ( ph  ->  V UHGrph  ( E  u.  F ) )

Proof of Theorem uhgraun
StepHypRef Expression
1 uhgraun.ge . . . . . 6  |-  ( ph  ->  V UHGrph  E )
2 uhgraf 24872 . . . . . 6  |-  ( V UHGrph  E  ->  E : dom  E --> ( ~P V  \  { (/) } ) )
31, 2syl 17 . . . . 5  |-  ( ph  ->  E : dom  E --> ( ~P V  \  { (/)
} ) )
4 uhgraun.e . . . . 5  |-  ( ph  ->  E  Fn  A )
5 fndm 5693 . . . . . . 7  |-  ( E  Fn  A  ->  dom  E  =  A )
65feq2d 5733 . . . . . 6  |-  ( E  Fn  A  ->  ( E : dom  E --> ( ~P V  \  { (/) } )  <->  E : A --> ( ~P V  \  { (/) } ) ) )
76biimpac 488 . . . . 5  |-  ( ( E : dom  E --> ( ~P V  \  { (/)
} )  /\  E  Fn  A )  ->  E : A --> ( ~P V  \  { (/) } ) )
83, 4, 7syl2anc 665 . . . 4  |-  ( ph  ->  E : A --> ( ~P V  \  { (/) } ) )
9 uhgraun.gf . . . . . 6  |-  ( ph  ->  V UHGrph  F )
10 uhgraf 24872 . . . . . 6  |-  ( V UHGrph  F  ->  F : dom  F --> ( ~P V  \  { (/) } ) )
119, 10syl 17 . . . . 5  |-  ( ph  ->  F : dom  F --> ( ~P V  \  { (/)
} ) )
12 uhgraun.f . . . . 5  |-  ( ph  ->  F  Fn  B )
13 fndm 5693 . . . . . . 7  |-  ( F  Fn  B  ->  dom  F  =  B )
1413feq2d 5733 . . . . . 6  |-  ( F  Fn  B  ->  ( F : dom  F --> ( ~P V  \  { (/) } )  <->  F : B --> ( ~P V  \  { (/) } ) ) )
1514biimpac 488 . . . . 5  |-  ( ( F : dom  F --> ( ~P V  \  { (/)
} )  /\  F  Fn  B )  ->  F : B --> ( ~P V  \  { (/) } ) )
1611, 12, 15syl2anc 665 . . . 4  |-  ( ph  ->  F : B --> ( ~P V  \  { (/) } ) )
17 uhgraun.i . . . 4  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
18 fun2 5764 . . . 4  |-  ( ( ( E : A --> ( ~P V  \  { (/)
} )  /\  F : B --> ( ~P V  \  { (/) } ) )  /\  ( A  i^i  B )  =  (/) )  -> 
( E  u.  F
) : ( A  u.  B ) --> ( ~P V  \  { (/)
} ) )
198, 16, 17, 18syl21anc 1263 . . 3  |-  ( ph  ->  ( E  u.  F
) : ( A  u.  B ) --> ( ~P V  \  { (/)
} ) )
20 fdm 5750 . . . . 5  |-  ( ( E  u.  F ) : ( A  u.  B ) --> ( ~P V  \  { (/) } )  ->  dom  ( E  u.  F )  =  ( A  u.  B
) )
2119, 20syl 17 . . . 4  |-  ( ph  ->  dom  ( E  u.  F )  =  ( A  u.  B ) )
2221feq2d 5733 . . 3  |-  ( ph  ->  ( ( E  u.  F ) : dom  ( E  u.  F
) --> ( ~P V  \  { (/) } )  <->  ( E  u.  F ) : ( A  u.  B ) --> ( ~P V  \  { (/) } ) ) )
2319, 22mpbird 235 . 2  |-  ( ph  ->  ( E  u.  F
) : dom  ( E  u.  F ) --> ( ~P V  \  { (/)
} ) )
24 reluhgra 24867 . . . 4  |-  Rel UHGrph
25 releldm 5087 . . . 4  |-  ( ( Rel UHGrph  /\  V UHGrph  E )  ->  V  e.  dom UHGrph  )
2624, 1, 25sylancr 667 . . 3  |-  ( ph  ->  V  e.  dom UHGrph  )
27 uhgrav 24869 . . . . . 6  |-  ( V UHGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
2827simprd 464 . . . . 5  |-  ( V UHGrph  E  ->  E  e.  _V )
291, 28syl 17 . . . 4  |-  ( ph  ->  E  e.  _V )
30 uhgrav 24869 . . . . . 6  |-  ( V UHGrph  F  ->  ( V  e. 
_V  /\  F  e.  _V ) )
3130simprd 464 . . . . 5  |-  ( V UHGrph  F  ->  F  e.  _V )
329, 31syl 17 . . . 4  |-  ( ph  ->  F  e.  _V )
33 unexg 6606 . . . 4  |-  ( ( E  e.  _V  /\  F  e.  _V )  ->  ( E  u.  F
)  e.  _V )
3429, 32, 33syl2anc 665 . . 3  |-  ( ph  ->  ( E  u.  F
)  e.  _V )
35 isuhgra 24871 . . 3  |-  ( ( V  e.  dom UHGrph  /\  ( E  u.  F )  e.  _V )  ->  ( V UHGrph  ( E  u.  F
)  <->  ( E  u.  F ) : dom  ( E  u.  F
) --> ( ~P V  \  { (/) } ) ) )
3626, 34, 35syl2anc 665 . 2  |-  ( ph  ->  ( V UHGrph  ( E  u.  F )  <->  ( E  u.  F ) : dom  ( E  u.  F
) --> ( ~P V  \  { (/) } ) ) )
3723, 36mpbird 235 1  |-  ( ph  ->  V UHGrph  ( E  u.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    = wceq 1437    e. wcel 1870   _Vcvv 3087    \ cdif 3439    u. cun 3440    i^i cin 3441   (/)c0 3767   ~Pcpw 3985   {csn 4002   class class class wbr 4426   dom cdm 4854   Rel wrel 4859    Fn wfn 5596   -->wf 5597   UHGrph cuhg 24863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-fun 5603  df-fn 5604  df-f 5605  df-uhgra 24865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator