Proof of Theorem uhgr2edg
Step | Hyp | Ref
| Expression |
1 | | simp1l 1054 |
. . . 4
   UHGraph  
    
  
 
UHGraph  |
2 | | simp1r 1055 |
. . . 4
   UHGraph  
    
  
 
  |
3 | | simp23 1065 |
. . . . 5
   UHGraph  
    
  
 
  |
4 | | simp21 1063 |
. . . . 5
   UHGraph  
    
  
 
  |
5 | | 3simpc 1029 |
. . . . . 6
 
 
   |
6 | 5 | 3ad2ant2 1052 |
. . . . 5
   UHGraph  
    
  
 

   |
7 | 3, 4, 6 | jca31 543 |
. . . 4
   UHGraph  
    
  
 
 
 
    |
8 | 1, 2, 7 | jca31 543 |
. . 3
   UHGraph  
    
  
 
 
UHGraph   


     |
9 | | simp3 1032 |
. . 3
   UHGraph  
    
  
 
  

      |
10 | 8, 9 | jca 541 |
. 2
   UHGraph  
    
  
 
   UHGraph   


         
    |
11 | | usgrf1oedg.e |
. . . . . . . . . 10
Edg   |
12 | 11 | a1i 11 |
. . . . . . . . 9
 UHGraph Edg    |
13 | | edgaval 39373 |
. . . . . . . . 9
 UHGraph Edg  iEdg    |
14 | | usgrf1oedg.i |
. . . . . . . . . . . 12
iEdg   |
15 | 14 | eqcomi 2480 |
. . . . . . . . . . 11
iEdg   |
16 | 15 | a1i 11 |
. . . . . . . . . 10
 UHGraph iEdg    |
17 | 16 | rneqd 5068 |
. . . . . . . . 9
 UHGraph
iEdg    |
18 | 12, 13, 17 | 3eqtrd 2509 |
. . . . . . . 8
 UHGraph   |
19 | 18 | eleq2d 2534 |
. . . . . . 7
 UHGraph           |
20 | 18 | eleq2d 2534 |
. . . . . . 7
 UHGraph           |
21 | 19, 20 | anbi12d 725 |
. . . . . 6
 UHGraph     
          
    |
22 | | eqid 2471 |
. . . . . . . . . 10
iEdg  iEdg   |
23 | 22 | uhgrfun 39310 |
. . . . . . . . 9
 UHGraph
iEdg    |
24 | 14 | funeqi 5609 |
. . . . . . . . 9
 iEdg    |
25 | 23, 24 | sylibr 217 |
. . . . . . . 8
 UHGraph
  |
26 | | funfn 5618 |
. . . . . . . 8

  |
27 | 25, 26 | sylib 201 |
. . . . . . 7
 UHGraph   |
28 | | fvelrnb 5926 |
. . . . . . . 8
    
       
    |
29 | | fvelrnb 5926 |
. . . . . . . 8
    
       
    |
30 | 28, 29 | anbi12d 725 |
. . . . . . 7
        

 
       
             |
31 | 27, 30 | syl 17 |
. . . . . 6
 UHGraph       
 
 
       
             |
32 | 21, 31 | bitrd 261 |
. . . . 5
 UHGraph     
                           |
33 | 32 | ad2antrr 740 |
. . . 4
   UHGraph   


       
                           |
34 | | reeanv 2944 |
. . . . 5
   
              
                        |
35 | | fveq2 5879 |
. . . . . . . . . . . . . . 15
           |
36 | 35 | eqeq1d 2473 |
. . . . . . . . . . . . . 14
        
     
    |
37 | 36 | anbi1d 719 |
. . . . . . . . . . . . 13
        
        
             
     |
38 | | eqtr2 2491 |
. . . . . . . . . . . . . 14
                     
   |
39 | | prcom 4041 |
. . . . . . . . . . . . . . . 16
    
  |
40 | 39 | eqeq2i 2483 |
. . . . . . . . . . . . . . 15
         
     |
41 | | preq12bg 4146 |
. . . . . . . . . . . . . . . . . . 19
  


     
 
          |
42 | 41 | ancom2s 819 |
. . . . . . . . . . . . . . . . . 18
  


     
 
          |
43 | | eqneqall 2654 |
. . . . . . . . . . . . . . . . . . . . 21
     |
44 | 43 | adantl 473 |
. . . . . . . . . . . . . . . . . . . 20
 
     |
45 | | eqtr 2490 |
. . . . . . . . . . . . . . . . . . . . . 22
 
   |
46 | 45 | ancoms 460 |
. . . . . . . . . . . . . . . . . . . . 21
 
   |
47 | 46, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
 
     |
48 | 44, 47 | jaoi 386 |
. . . . . . . . . . . . . . . . . . 19
           |
49 | 48 | adantld 474 |
. . . . . . . . . . . . . . . . . 18
         UHGraph

   |
50 | 42, 49 | syl6bi 236 |
. . . . . . . . . . . . . . . . 17
  


     
 
   UHGraph

    |
51 | 50 | com3l 83 |
. . . . . . . . . . . . . . . 16
         UHGraph 
  


      |
52 | 51 | impd 438 |
. . . . . . . . . . . . . . 15
          UHGraph
  


      |
53 | 40, 52 | sylbi 200 |
. . . . . . . . . . . . . 14
          UHGraph
  


      |
54 | 38, 53 | syl 17 |
. . . . . . . . . . . . 13
                    UHGraph

 
 
      |
55 | 37, 54 | syl6bi 236 |
. . . . . . . . . . . 12
        
            UHGraph 
 
 
       |
56 | 55 | com23 80 |
. . . . . . . . . . 11
    UHGraph

 
 
                 
 
    |
57 | 56 | impd 438 |
. . . . . . . . . 10
     UHGraph 
 
 
         
             |
58 | | ax-1 6 |
. . . . . . . . . 10
     UHGraph 
 
 
         
             |
59 | 57, 58 | pm2.61ine 2726 |
. . . . . . . . 9
    UHGraph

 
 
         
            |
60 | | prid1g 4069 |
. . . . . . . . . . . . . 14
      |
61 | 60 | ad2antrr 740 |
. . . . . . . . . . . . 13
  


 
     |
62 | 61 | adantl 473 |
. . . . . . . . . . . 12
   UHGraph   


    
   |
63 | | eleq2 2538 |
. . . . . . . . . . . 12
       
    
      |
64 | 62, 63 | syl5ibr 229 |
. . . . . . . . . . 11
       
   UHGraph   


          |
65 | 64 | adantr 472 |
. . . . . . . . . 10
                    UHGraph

 
 
  
       |
66 | 65 | impcom 437 |
. . . . . . . . 9
    UHGraph

 
 
         
                |
67 | | prid2g 4070 |
. . . . . . . . . . . . . 14
      |
68 | 67 | ad2antrr 740 |
. . . . . . . . . . . . 13
  


 
     |
69 | 68 | adantl 473 |
. . . . . . . . . . . 12
   UHGraph   


    
   |
70 | | eleq2 2538 |
. . . . . . . . . . . 12
       
    
      |
71 | 69, 70 | syl5ibr 229 |
. . . . . . . . . . 11
       
   UHGraph   


          |
72 | 71 | adantl 473 |
. . . . . . . . . 10
                    UHGraph

 
 
  
       |
73 | 72 | impcom 437 |
. . . . . . . . 9
    UHGraph

 
 
         
                |
74 | 59, 66, 73 | 3jca 1210 |
. . . . . . . 8
    UHGraph

 
 
         
              
       |
75 | 74 | ex 441 |
. . . . . . 7
   UHGraph   


           
        
            |
76 | 75 | reximdv 2857 |
. . . . . 6
   UHGraph   


             
              
        |
77 | 76 | reximdv 2857 |
. . . . 5
   UHGraph   


               
                
        |
78 | 34, 77 | syl5bir 226 |
. . . 4
   UHGraph   


              
                 
        |
79 | 33, 78 | sylbid 223 |
. . 3
   UHGraph   


       
   
        
        |
80 | 79 | imp 436 |
. 2
    UHGraph

 
 
      
     
       
       |
81 | 10, 80 | syl 17 |
1
   UHGraph  
    
  
 
        
       |