MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufprim Structured version   Unicode version

Theorem ufprim 19504
Description: An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Mario Carneiro, 2-Aug-2015.)
Assertion
Ref Expression
ufprim  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  (
( A  e.  F  \/  B  e.  F
)  <->  ( A  u.  B )  e.  F
) )

Proof of Theorem ufprim
StepHypRef Expression
1 ufilfil 19499 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
213ad2ant1 1009 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  F  e.  ( Fil `  X
) )
32adantr 465 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  A  e.  F )  ->  F  e.  ( Fil `  X ) )
4 simpr 461 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  A  e.  F )  ->  A  e.  F )
5 unss 3551 . . . . . . . 8  |-  ( ( A  C_  X  /\  B  C_  X )  <->  ( A  u.  B )  C_  X
)
65biimpi 194 . . . . . . 7  |-  ( ( A  C_  X  /\  B  C_  X )  -> 
( A  u.  B
)  C_  X )
763adant1 1006 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  ( A  u.  B )  C_  X )
87adantr 465 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  A  e.  F )  ->  ( A  u.  B
)  C_  X )
9 ssun1 3540 . . . . . 6  |-  A  C_  ( A  u.  B
)
109a1i 11 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  A  e.  F )  ->  A  C_  ( A  u.  B ) )
11 filss 19448 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  ( A  u.  B
)  C_  X  /\  A  C_  ( A  u.  B ) ) )  ->  ( A  u.  B )  e.  F
)
123, 4, 8, 10, 11syl13anc 1220 . . . 4  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  A  e.  F )  ->  ( A  u.  B
)  e.  F )
1312ex 434 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  ( A  e.  F  ->  ( A  u.  B )  e.  F ) )
142adantr 465 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  B  e.  F )  ->  F  e.  ( Fil `  X ) )
15 simpr 461 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  B  e.  F )  ->  B  e.  F )
167adantr 465 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  B  e.  F )  ->  ( A  u.  B
)  C_  X )
17 ssun2 3541 . . . . . 6  |-  B  C_  ( A  u.  B
)
1817a1i 11 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  B  e.  F )  ->  B  C_  ( A  u.  B ) )
19 filss 19448 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  ( B  e.  F  /\  ( A  u.  B
)  C_  X  /\  B  C_  ( A  u.  B ) ) )  ->  ( A  u.  B )  e.  F
)
2014, 15, 16, 18, 19syl13anc 1220 . . . 4  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  B  e.  F )  ->  ( A  u.  B
)  e.  F )
2120ex 434 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  ( B  e.  F  ->  ( A  u.  B )  e.  F ) )
2213, 21jaod 380 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  (
( A  e.  F  \/  B  e.  F
)  ->  ( A  u.  B )  e.  F
) )
23 ufilb 19501 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X )  ->  ( -.  A  e.  F  <->  ( X  \  A )  e.  F ) )
24233adant3 1008 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  ( -.  A  e.  F  <->  ( X  \  A )  e.  F ) )
2524adantr 465 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F )  ->  ( -.  A  e.  F  <->  ( X  \  A )  e.  F
) )
2623ad2ant1 1009 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  ->  F  e.  ( Fil `  X ) )
27 difun2 3779 . . . . . . . . . . 11  |-  ( ( B  u.  A ) 
\  A )  =  ( B  \  A
)
28 uncom 3521 . . . . . . . . . . . 12  |-  ( B  u.  A )  =  ( A  u.  B
)
2928difeq1i 3491 . . . . . . . . . . 11  |-  ( ( B  u.  A ) 
\  A )  =  ( ( A  u.  B )  \  A
)
3027, 29eqtr3i 2465 . . . . . . . . . 10  |-  ( B 
\  A )  =  ( ( A  u.  B )  \  A
)
3130ineq2i 3570 . . . . . . . . 9  |-  ( X  i^i  ( B  \  A ) )  =  ( X  i^i  (
( A  u.  B
)  \  A )
)
32 indifcom 3616 . . . . . . . . 9  |-  ( B  i^i  ( X  \  A ) )  =  ( X  i^i  ( B  \  A ) )
33 indifcom 3616 . . . . . . . . 9  |-  ( ( A  u.  B )  i^i  ( X  \  A ) )  =  ( X  i^i  (
( A  u.  B
)  \  A )
)
3431, 32, 333eqtr4i 2473 . . . . . . . 8  |-  ( B  i^i  ( X  \  A ) )  =  ( ( A  u.  B )  i^i  ( X  \  A ) )
35 filin 19449 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  u.  B )  e.  F  /\  ( X  \  A )  e.  F )  ->  (
( A  u.  B
)  i^i  ( X  \  A ) )  e.  F )
362, 35syl3an1 1251 . . . . . . . 8  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  -> 
( ( A  u.  B )  i^i  ( X  \  A ) )  e.  F )
3734, 36syl5eqel 2527 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  -> 
( B  i^i  ( X  \  A ) )  e.  F )
38 simp13 1020 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  ->  B  C_  X )
39 inss1 3591 . . . . . . . 8  |-  ( B  i^i  ( X  \  A ) )  C_  B
4039a1i 11 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  -> 
( B  i^i  ( X  \  A ) ) 
C_  B )
41 filss 19448 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
( B  i^i  ( X  \  A ) )  e.  F  /\  B  C_  X  /\  ( B  i^i  ( X  \  A ) )  C_  B ) )  ->  B  e.  F )
4226, 37, 38, 40, 41syl13anc 1220 . . . . . 6  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F  /\  ( X  \  A )  e.  F )  ->  B  e.  F )
43423expia 1189 . . . . 5  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F )  ->  ( ( X 
\  A )  e.  F  ->  B  e.  F ) )
4425, 43sylbid 215 . . . 4  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F )  ->  ( -.  A  e.  F  ->  B  e.  F ) )
4544orrd 378 . . 3  |-  ( ( ( F  e.  (
UFil `  X )  /\  A  C_  X  /\  B  C_  X )  /\  ( A  u.  B
)  e.  F )  ->  ( A  e.  F  \/  B  e.  F ) )
4645ex 434 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  (
( A  u.  B
)  e.  F  -> 
( A  e.  F  \/  B  e.  F
) ) )
4722, 46impbid 191 1  |-  ( ( F  e.  ( UFil `  X )  /\  A  C_  X  /\  B  C_  X )  ->  (
( A  e.  F  \/  B  e.  F
)  <->  ( A  u.  B )  e.  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    e. wcel 1756    \ cdif 3346    u. cun 3347    i^i cin 3348    C_ wss 3349   ` cfv 5439   Filcfil 19440   UFilcufil 19494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fv 5447  df-fbas 17836  df-fil 19441  df-ufil 19496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator