MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Unicode version

Theorem ufldom 19535
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )

Proof of Theorem ufldom
Dummy variables  u  x  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 7324 . . 3  |-  ( X  e. UFL  ->  ( Y  ~<_  X  <->  E. x ( Y  ~~  x  /\  x  C_  X
) ) )
2 bren 7319 . . . . . . . 8  |-  ( Y 
~~  x  <->  E. f 
f : Y -1-1-onto-> x )
32biimpi 194 . . . . . . 7  |-  ( Y 
~~  x  ->  E. f 
f : Y -1-1-onto-> x )
4 ssufl 19491 . . . . . . 7  |-  ( ( X  e. UFL  /\  x  C_  X )  ->  x  e. UFL )
5 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  x  e. UFL )
6 filfbas 19421 . . . . . . . . . . . . . . . 16  |-  ( g  e.  ( Fil `  Y
)  ->  g  e.  ( fBas `  Y )
)
76adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  g  e.  (
fBas `  Y )
)
8 f1of 5641 . . . . . . . . . . . . . . . 16  |-  ( f : Y -1-1-onto-> x  ->  f : Y --> x )
98ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  f : Y --> x )
10 fmfil 19517 . . . . . . . . . . . . . . 15  |-  ( ( x  e. UFL  /\  g  e.  ( fBas `  Y
)  /\  f : Y
--> x )  ->  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )
115, 7, 9, 10syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  ( ( x 
FilMap  f ) `  g
)  e.  ( Fil `  x ) )
12 ufli 19487 . . . . . . . . . . . . . 14  |-  ( ( x  e. UFL  /\  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )  ->  E. y  e.  ( UFil `  x
) ( ( x 
FilMap  f ) `  g
)  C_  y )
135, 11, 12syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. y  e.  (
UFil `  x )
( ( x  FilMap  f ) `  g ) 
C_  y )
14 f1odm 5645 . . . . . . . . . . . . . . . . . 18  |-  ( f : Y -1-1-onto-> x  ->  dom  f  =  Y )
1514adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  dom  f  =  Y )
16 vex 2975 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
1716dmex 6511 . . . . . . . . . . . . . . . . 17  |-  dom  f  e.  _V
1815, 17syl6eqelr 2532 . . . . . . . . . . . . . . . 16  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e.  _V )
1918ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  Y  e.  _V )
20 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( UFil `  x ) )
21 f1ocnv 5653 . . . . . . . . . . . . . . . . 17  |-  ( f : Y -1-1-onto-> x  ->  `' f : x -1-1-onto-> Y )
2221ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x -1-1-onto-> Y )
23 f1of 5641 . . . . . . . . . . . . . . . 16  |-  ( `' f : x -1-1-onto-> Y  ->  `' f : x --> Y )
2422, 23syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x --> Y )
25 fmufil 19532 . . . . . . . . . . . . . . 15  |-  ( ( Y  e.  _V  /\  y  e.  ( UFil `  x )  /\  `' f : x --> Y )  ->  ( ( Y 
FilMap  `' f ) `  y )  e.  (
UFil `  Y )
)
2619, 20, 24, 25syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y ) )
27 f1ococnv1 5669 . . . . . . . . . . . . . . . . . . 19  |-  ( f : Y -1-1-onto-> x  ->  ( `' f  o.  f )  =  (  _I  |`  Y ) )
2827ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( `' f  o.  f )  =  (  _I  |`  Y )
)
2928oveq2d 6107 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( Y  FilMap  ( `' f  o.  f ) )  =  ( Y 
FilMap  (  _I  |`  Y ) ) )
3029fveq1d 5693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g ) )
315adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  x  e. UFL )
327adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( fBas `  Y ) )
338ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
f : Y --> x )
34 fmco 19534 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Y  e.  _V  /\  x  e. UFL  /\  g  e.  ( fBas `  Y
) )  /\  ( `' f : x --> Y  /\  f : Y --> x ) )  ->  ( ( Y 
FilMap  ( `' f  o.  f ) ) `  g )  =  ( ( Y  FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) ) )
3519, 31, 32, 24, 33, 34syl32anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  `' f ) `
 ( ( x 
FilMap  f ) `  g
) ) )
36 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( Fil `  Y ) )
37 fmid 19533 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g )  =  g )
3836, 37syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  (  _I  |`  Y )
) `  g )  =  g )
3930, 35, 383eqtr3d 2483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) )  =  g )
4011adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( Fil `  x
) )
41 filfbas 19421 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  FilMap  f ) `
 g )  e.  ( Fil `  x
)  ->  ( (
x  FilMap  f ) `  g )  e.  (
fBas `  x )
)
4240, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
) )
43 ufilfil 19477 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( UFil `  x
)  ->  y  e.  ( Fil `  x ) )
44 filfbas 19421 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Fil `  x
)  ->  y  e.  ( fBas `  x )
)
4520, 43, 443syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( fBas `  x ) )
46 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g ) 
C_  y )
47 fmss 19519 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  e.  _V  /\  ( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
)  /\  y  e.  ( fBas `  x )
)  /\  ( `' f : x --> Y  /\  ( ( x  FilMap  f ) `  g ) 
C_  y ) )  ->  ( ( Y 
FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) )  C_  ( ( Y  FilMap  `' f ) `
 y ) )
4819, 42, 45, 24, 46, 47syl32anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) ) 
C_  ( ( Y 
FilMap  `' f ) `  y ) )
4939, 48eqsstr3d 3391 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  C_  ( ( Y  FilMap  `' f ) `
 y ) )
50 sseq2 3378 . . . . . . . . . . . . . . 15  |-  ( u  =  ( ( Y 
FilMap  `' f ) `  y )  ->  (
g  C_  u  <->  g  C_  ( ( Y  FilMap  `' f ) `  y
) ) )
5150rspcev 3073 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y )  /\  g  C_  ( ( Y  FilMap  `' f ) `  y
) )  ->  E. u  e.  ( UFil `  Y
) g  C_  u
)
5226, 49, 51syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  E. u  e.  ( UFil `  Y ) g 
C_  u )
5313, 52rexlimddv 2845 . . . . . . . . . . . 12  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. u  e.  (
UFil `  Y )
g  C_  u )
5453ralrimiva 2799 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  A. g  e.  ( Fil `  Y ) E. u  e.  ( UFil `  Y
) g  C_  u
)
55 isufl 19486 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y ) E. u  e.  (
UFil `  Y )
g  C_  u )
)
5618, 55syl 16 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y
) E. u  e.  ( UFil `  Y
) g  C_  u
) )
5754, 56mpbird 232 . . . . . . . . . 10  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
5857ex 434 . . . . . . . . 9  |-  ( f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL )
)
5958exlimiv 1688 . . . . . . . 8  |-  ( E. f  f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL ) )
6059imp 429 . . . . . . 7  |-  ( ( E. f  f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
613, 4, 60syl2an 477 . . . . . 6  |-  ( ( Y  ~~  x  /\  ( X  e. UFL  /\  x  C_  X ) )  ->  Y  e. UFL )
6261an12s 799 . . . . 5  |-  ( ( X  e. UFL  /\  ( Y  ~~  x  /\  x  C_  X ) )  ->  Y  e. UFL )
6362ex 434 . . . 4  |-  ( X  e. UFL  ->  ( ( Y 
~~  x  /\  x  C_  X )  ->  Y  e. UFL ) )
6463exlimdv 1690 . . 3  |-  ( X  e. UFL  ->  ( E. x
( Y  ~~  x  /\  x  C_  X )  ->  Y  e. UFL )
)
651, 64sylbid 215 . 2  |-  ( X  e. UFL  ->  ( Y  ~<_  X  ->  Y  e. UFL )
)
6665imp 429 1  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972    C_ wss 3328   class class class wbr 4292    _I cid 4631   `'ccnv 4839   dom cdm 4840    |` cres 4842    o. ccom 4844   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091    ~~ cen 7307    ~<_ cdom 7308   fBascfbas 17804   Filcfil 19418   UFilcufil 19472  UFLcufl 19473    FilMap cfm 19506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-fin 7314  df-fi 7661  df-rest 14361  df-fbas 17814  df-fg 17815  df-fil 19419  df-ufil 19474  df-ufl 19475  df-fm 19511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator