MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Unicode version

Theorem ufldom 20647
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )

Proof of Theorem ufldom
Dummy variables  u  x  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 7488 . . 3  |-  ( X  e. UFL  ->  ( Y  ~<_  X  <->  E. x ( Y  ~~  x  /\  x  C_  X
) ) )
2 bren 7483 . . . . . . . 8  |-  ( Y 
~~  x  <->  E. f 
f : Y -1-1-onto-> x )
32biimpi 194 . . . . . . 7  |-  ( Y 
~~  x  ->  E. f 
f : Y -1-1-onto-> x )
4 ssufl 20603 . . . . . . 7  |-  ( ( X  e. UFL  /\  x  C_  X )  ->  x  e. UFL )
5 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  x  e. UFL )
6 filfbas 20533 . . . . . . . . . . . . . . . 16  |-  ( g  e.  ( Fil `  Y
)  ->  g  e.  ( fBas `  Y )
)
76adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  g  e.  (
fBas `  Y )
)
8 f1of 5755 . . . . . . . . . . . . . . . 16  |-  ( f : Y -1-1-onto-> x  ->  f : Y --> x )
98ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  f : Y --> x )
10 fmfil 20629 . . . . . . . . . . . . . . 15  |-  ( ( x  e. UFL  /\  g  e.  ( fBas `  Y
)  /\  f : Y
--> x )  ->  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )
115, 7, 9, 10syl3anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  ( ( x 
FilMap  f ) `  g
)  e.  ( Fil `  x ) )
12 ufli 20599 . . . . . . . . . . . . . 14  |-  ( ( x  e. UFL  /\  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )  ->  E. y  e.  ( UFil `  x
) ( ( x 
FilMap  f ) `  g
)  C_  y )
135, 11, 12syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. y  e.  (
UFil `  x )
( ( x  FilMap  f ) `  g ) 
C_  y )
14 f1odm 5759 . . . . . . . . . . . . . . . . . 18  |-  ( f : Y -1-1-onto-> x  ->  dom  f  =  Y )
1514adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  dom  f  =  Y )
16 vex 3061 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
1716dmex 6671 . . . . . . . . . . . . . . . . 17  |-  dom  f  e.  _V
1815, 17syl6eqelr 2499 . . . . . . . . . . . . . . . 16  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e.  _V )
1918ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  Y  e.  _V )
20 simprl 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( UFil `  x ) )
21 f1ocnv 5767 . . . . . . . . . . . . . . . . 17  |-  ( f : Y -1-1-onto-> x  ->  `' f : x -1-1-onto-> Y )
2221ad3antrrr 728 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x -1-1-onto-> Y )
23 f1of 5755 . . . . . . . . . . . . . . . 16  |-  ( `' f : x -1-1-onto-> Y  ->  `' f : x --> Y )
2422, 23syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x --> Y )
25 fmufil 20644 . . . . . . . . . . . . . . 15  |-  ( ( Y  e.  _V  /\  y  e.  ( UFil `  x )  /\  `' f : x --> Y )  ->  ( ( Y 
FilMap  `' f ) `  y )  e.  (
UFil `  Y )
)
2619, 20, 24, 25syl3anc 1230 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y ) )
27 f1ococnv1 5783 . . . . . . . . . . . . . . . . . . 19  |-  ( f : Y -1-1-onto-> x  ->  ( `' f  o.  f )  =  (  _I  |`  Y ) )
2827ad3antrrr 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( `' f  o.  f )  =  (  _I  |`  Y )
)
2928oveq2d 6250 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( Y  FilMap  ( `' f  o.  f ) )  =  ( Y 
FilMap  (  _I  |`  Y ) ) )
3029fveq1d 5807 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g ) )
315adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  x  e. UFL )
327adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( fBas `  Y ) )
338ad3antrrr 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
f : Y --> x )
34 fmco 20646 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Y  e.  _V  /\  x  e. UFL  /\  g  e.  ( fBas `  Y
) )  /\  ( `' f : x --> Y  /\  f : Y --> x ) )  ->  ( ( Y 
FilMap  ( `' f  o.  f ) ) `  g )  =  ( ( Y  FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) ) )
3519, 31, 32, 24, 33, 34syl32anc 1238 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  `' f ) `
 ( ( x 
FilMap  f ) `  g
) ) )
36 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( Fil `  Y ) )
37 fmid 20645 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g )  =  g )
3836, 37syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  (  _I  |`  Y )
) `  g )  =  g )
3930, 35, 383eqtr3d 2451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) )  =  g )
4011adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( Fil `  x
) )
41 filfbas 20533 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  FilMap  f ) `
 g )  e.  ( Fil `  x
)  ->  ( (
x  FilMap  f ) `  g )  e.  (
fBas `  x )
)
4240, 41syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
) )
43 ufilfil 20589 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( UFil `  x
)  ->  y  e.  ( Fil `  x ) )
44 filfbas 20533 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Fil `  x
)  ->  y  e.  ( fBas `  x )
)
4520, 43, 443syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( fBas `  x ) )
46 simprr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g ) 
C_  y )
47 fmss 20631 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  e.  _V  /\  ( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
)  /\  y  e.  ( fBas `  x )
)  /\  ( `' f : x --> Y  /\  ( ( x  FilMap  f ) `  g ) 
C_  y ) )  ->  ( ( Y 
FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) )  C_  ( ( Y  FilMap  `' f ) `
 y ) )
4819, 42, 45, 24, 46, 47syl32anc 1238 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) ) 
C_  ( ( Y 
FilMap  `' f ) `  y ) )
4939, 48eqsstr3d 3476 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  C_  ( ( Y  FilMap  `' f ) `
 y ) )
50 sseq2 3463 . . . . . . . . . . . . . . 15  |-  ( u  =  ( ( Y 
FilMap  `' f ) `  y )  ->  (
g  C_  u  <->  g  C_  ( ( Y  FilMap  `' f ) `  y
) ) )
5150rspcev 3159 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y )  /\  g  C_  ( ( Y  FilMap  `' f ) `  y
) )  ->  E. u  e.  ( UFil `  Y
) g  C_  u
)
5226, 49, 51syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  E. u  e.  ( UFil `  Y ) g 
C_  u )
5313, 52rexlimddv 2899 . . . . . . . . . . . 12  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. u  e.  (
UFil `  Y )
g  C_  u )
5453ralrimiva 2817 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  A. g  e.  ( Fil `  Y ) E. u  e.  ( UFil `  Y
) g  C_  u
)
55 isufl 20598 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y ) E. u  e.  (
UFil `  Y )
g  C_  u )
)
5618, 55syl 17 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y
) E. u  e.  ( UFil `  Y
) g  C_  u
) )
5754, 56mpbird 232 . . . . . . . . . 10  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
5857ex 432 . . . . . . . . 9  |-  ( f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL )
)
5958exlimiv 1743 . . . . . . . 8  |-  ( E. f  f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL ) )
6059imp 427 . . . . . . 7  |-  ( ( E. f  f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
613, 4, 60syl2an 475 . . . . . 6  |-  ( ( Y  ~~  x  /\  ( X  e. UFL  /\  x  C_  X ) )  ->  Y  e. UFL )
6261an12s 802 . . . . 5  |-  ( ( X  e. UFL  /\  ( Y  ~~  x  /\  x  C_  X ) )  ->  Y  e. UFL )
6362ex 432 . . . 4  |-  ( X  e. UFL  ->  ( ( Y 
~~  x  /\  x  C_  X )  ->  Y  e. UFL ) )
6463exlimdv 1745 . . 3  |-  ( X  e. UFL  ->  ( E. x
( Y  ~~  x  /\  x  C_  X )  ->  Y  e. UFL )
)
651, 64sylbid 215 . 2  |-  ( X  e. UFL  ->  ( Y  ~<_  X  ->  Y  e. UFL )
)
6665imp 427 1  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842   A.wral 2753   E.wrex 2754   _Vcvv 3058    C_ wss 3413   class class class wbr 4394    _I cid 4732   `'ccnv 4941   dom cdm 4942    |` cres 4944    o. ccom 4946   -->wf 5521   -1-1-onto->wf1o 5524   ` cfv 5525  (class class class)co 6234    ~~ cen 7471    ~<_ cdom 7472   fBascfbas 18618   Filcfil 20530   UFilcufil 20584  UFLcufl 20585    FilMap cfm 20618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-1o 7087  df-oadd 7091  df-er 7268  df-en 7475  df-dom 7476  df-fin 7478  df-fi 7825  df-rest 14929  df-fbas 18628  df-fg 18629  df-fil 20531  df-ufil 20586  df-ufl 20587  df-fm 20623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator