MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufldom Structured version   Visualization version   Unicode version

Theorem ufldom 20977
Description: The ultrafilter lemma property is a cardinal invariant, so since it transfers to subsets it also transfers over set dominance. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufldom  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )

Proof of Theorem ufldom
Dummy variables  u  x  f  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domeng 7583 . . 3  |-  ( X  e. UFL  ->  ( Y  ~<_  X  <->  E. x ( Y  ~~  x  /\  x  C_  X
) ) )
2 bren 7578 . . . . . . . 8  |-  ( Y 
~~  x  <->  E. f 
f : Y -1-1-onto-> x )
32biimpi 198 . . . . . . 7  |-  ( Y 
~~  x  ->  E. f 
f : Y -1-1-onto-> x )
4 ssufl 20933 . . . . . . 7  |-  ( ( X  e. UFL  /\  x  C_  X )  ->  x  e. UFL )
5 simplr 762 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  x  e. UFL )
6 filfbas 20863 . . . . . . . . . . . . . . . 16  |-  ( g  e.  ( Fil `  Y
)  ->  g  e.  ( fBas `  Y )
)
76adantl 468 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  g  e.  (
fBas `  Y )
)
8 f1of 5814 . . . . . . . . . . . . . . . 16  |-  ( f : Y -1-1-onto-> x  ->  f : Y --> x )
98ad2antrr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  f : Y --> x )
10 fmfil 20959 . . . . . . . . . . . . . . 15  |-  ( ( x  e. UFL  /\  g  e.  ( fBas `  Y
)  /\  f : Y
--> x )  ->  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )
115, 7, 9, 10syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  ( ( x 
FilMap  f ) `  g
)  e.  ( Fil `  x ) )
12 ufli 20929 . . . . . . . . . . . . . 14  |-  ( ( x  e. UFL  /\  (
( x  FilMap  f ) `
 g )  e.  ( Fil `  x
) )  ->  E. y  e.  ( UFil `  x
) ( ( x 
FilMap  f ) `  g
)  C_  y )
135, 11, 12syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. y  e.  (
UFil `  x )
( ( x  FilMap  f ) `  g ) 
C_  y )
14 f1odm 5818 . . . . . . . . . . . . . . . . . 18  |-  ( f : Y -1-1-onto-> x  ->  dom  f  =  Y )
1514adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  dom  f  =  Y )
16 vex 3048 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
1716dmex 6726 . . . . . . . . . . . . . . . . 17  |-  dom  f  e.  _V
1815, 17syl6eqelr 2538 . . . . . . . . . . . . . . . 16  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e.  _V )
1918ad2antrr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  Y  e.  _V )
20 simprl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( UFil `  x ) )
21 f1ocnv 5826 . . . . . . . . . . . . . . . . 17  |-  ( f : Y -1-1-onto-> x  ->  `' f : x -1-1-onto-> Y )
2221ad3antrrr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x -1-1-onto-> Y )
23 f1of 5814 . . . . . . . . . . . . . . . 16  |-  ( `' f : x -1-1-onto-> Y  ->  `' f : x --> Y )
2422, 23syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  `' f : x --> Y )
25 fmufil 20974 . . . . . . . . . . . . . . 15  |-  ( ( Y  e.  _V  /\  y  e.  ( UFil `  x )  /\  `' f : x --> Y )  ->  ( ( Y 
FilMap  `' f ) `  y )  e.  (
UFil `  Y )
)
2619, 20, 24, 25syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y ) )
27 f1ococnv1 5842 . . . . . . . . . . . . . . . . . . 19  |-  ( f : Y -1-1-onto-> x  ->  ( `' f  o.  f )  =  (  _I  |`  Y ) )
2827ad3antrrr 736 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( `' f  o.  f )  =  (  _I  |`  Y )
)
2928oveq2d 6306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( Y  FilMap  ( `' f  o.  f ) )  =  ( Y 
FilMap  (  _I  |`  Y ) ) )
3029fveq1d 5867 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g ) )
315adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  x  e. UFL )
327adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( fBas `  Y ) )
338ad3antrrr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
f : Y --> x )
34 fmco 20976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Y  e.  _V  /\  x  e. UFL  /\  g  e.  ( fBas `  Y
) )  /\  ( `' f : x --> Y  /\  f : Y --> x ) )  ->  ( ( Y 
FilMap  ( `' f  o.  f ) ) `  g )  =  ( ( Y  FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) ) )
3519, 31, 32, 24, 33, 34syl32anc 1276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  ( `' f  o.  f
) ) `  g
)  =  ( ( Y  FilMap  `' f ) `
 ( ( x 
FilMap  f ) `  g
) ) )
36 simplr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  e.  ( Fil `  Y ) )
37 fmid 20975 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  Y
)  ->  ( ( Y  FilMap  (  _I  |`  Y ) ) `  g )  =  g )
3836, 37syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  (  _I  |`  Y )
) `  g )  =  g )
3930, 35, 383eqtr3d 2493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) )  =  g )
4011adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( Fil `  x
) )
41 filfbas 20863 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  FilMap  f ) `
 g )  e.  ( Fil `  x
)  ->  ( (
x  FilMap  f ) `  g )  e.  (
fBas `  x )
)
4240, 41syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
) )
43 ufilfil 20919 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( UFil `  x
)  ->  y  e.  ( Fil `  x ) )
44 filfbas 20863 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( Fil `  x
)  ->  y  e.  ( fBas `  x )
)
4520, 43, 443syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
y  e.  ( fBas `  x ) )
46 simprr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( x  FilMap  f ) `  g ) 
C_  y )
47 fmss 20961 . . . . . . . . . . . . . . . 16  |-  ( ( ( Y  e.  _V  /\  ( ( x  FilMap  f ) `  g )  e.  ( fBas `  x
)  /\  y  e.  ( fBas `  x )
)  /\  ( `' f : x --> Y  /\  ( ( x  FilMap  f ) `  g ) 
C_  y ) )  ->  ( ( Y 
FilMap  `' f ) `  ( ( x  FilMap  f ) `  g ) )  C_  ( ( Y  FilMap  `' f ) `
 y ) )
4819, 42, 45, 24, 46, 47syl32anc 1276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
( ( Y  FilMap  `' f ) `  (
( x  FilMap  f ) `
 g ) ) 
C_  ( ( Y 
FilMap  `' f ) `  y ) )
4939, 48eqsstr3d 3467 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  -> 
g  C_  ( ( Y  FilMap  `' f ) `
 y ) )
50 sseq2 3454 . . . . . . . . . . . . . . 15  |-  ( u  =  ( ( Y 
FilMap  `' f ) `  y )  ->  (
g  C_  u  <->  g  C_  ( ( Y  FilMap  `' f ) `  y
) ) )
5150rspcev 3150 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  FilMap  `' f ) `  y
)  e.  ( UFil `  Y )  /\  g  C_  ( ( Y  FilMap  `' f ) `  y
) )  ->  E. u  e.  ( UFil `  Y
) g  C_  u
)
5226, 49, 51syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y
) )  /\  (
y  e.  ( UFil `  x )  /\  (
( x  FilMap  f ) `
 g )  C_  y ) )  ->  E. u  e.  ( UFil `  Y ) g 
C_  u )
5313, 52rexlimddv 2883 . . . . . . . . . . . 12  |-  ( ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  /\  g  e.  ( Fil `  Y ) )  ->  E. u  e.  (
UFil `  Y )
g  C_  u )
5453ralrimiva 2802 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  A. g  e.  ( Fil `  Y ) E. u  e.  ( UFil `  Y
) g  C_  u
)
55 isufl 20928 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y ) E. u  e.  (
UFil `  Y )
g  C_  u )
)
5618, 55syl 17 . . . . . . . . . . 11  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  ( Y  e. UFL  <->  A. g  e.  ( Fil `  Y
) E. u  e.  ( UFil `  Y
) g  C_  u
) )
5754, 56mpbird 236 . . . . . . . . . 10  |-  ( ( f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
5857ex 436 . . . . . . . . 9  |-  ( f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL )
)
5958exlimiv 1776 . . . . . . . 8  |-  ( E. f  f : Y -1-1-onto-> x  ->  ( x  e. UFL  ->  Y  e. UFL ) )
6059imp 431 . . . . . . 7  |-  ( ( E. f  f : Y -1-1-onto-> x  /\  x  e. UFL )  ->  Y  e. UFL )
613, 4, 60syl2an 480 . . . . . 6  |-  ( ( Y  ~~  x  /\  ( X  e. UFL  /\  x  C_  X ) )  ->  Y  e. UFL )
6261an12s 810 . . . . 5  |-  ( ( X  e. UFL  /\  ( Y  ~~  x  /\  x  C_  X ) )  ->  Y  e. UFL )
6362ex 436 . . . 4  |-  ( X  e. UFL  ->  ( ( Y 
~~  x  /\  x  C_  X )  ->  Y  e. UFL ) )
6463exlimdv 1779 . . 3  |-  ( X  e. UFL  ->  ( E. x
( Y  ~~  x  /\  x  C_  X )  ->  Y  e. UFL )
)
651, 64sylbid 219 . 2  |-  ( X  e. UFL  ->  ( Y  ~<_  X  ->  Y  e. UFL )
)
6665imp 431 1  |-  ( ( X  e. UFL  /\  Y  ~<_  X )  ->  Y  e. UFL )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    C_ wss 3404   class class class wbr 4402    _I cid 4744   `'ccnv 4833   dom cdm 4834    |` cres 4836    o. ccom 4838   -->wf 5578   -1-1-onto->wf1o 5581   ` cfv 5582  (class class class)co 6290    ~~ cen 7566    ~<_ cdom 7567   fBascfbas 18958   Filcfil 20860   UFilcufil 20914  UFLcufl 20915    FilMap cfm 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-en 7570  df-dom 7571  df-fin 7573  df-fi 7925  df-rest 15321  df-fbas 18967  df-fg 18968  df-fil 20861  df-ufil 20916  df-ufl 20917  df-fm 20953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator