MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Unicode version

Theorem ufinffr 20158
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Distinct variable groups:    A, f    B, f    f, X

Proof of Theorem ufinffr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 7722 . . . . 5  |-  -.  om  e.  Fin
2 domfi 7731 . . . . . 6  |-  ( ( A  e.  Fin  /\  om  ~<_  A )  ->  om  e.  Fin )
32expcom 435 . . . . 5  |-  ( om  ~<_  A  ->  ( A  e.  Fin  ->  om  e.  Fin ) )
41, 3mtoi 178 . . . 4  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
5 cfinfil 20122 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
64, 5syl3an3 1258 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X ) )
7 filssufil 20141 . . 3  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
86, 7syl 16 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
9 elpw2g 4603 . . . . . . . 8  |-  ( X  e.  B  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
109biimpar 485 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X )  ->  A  e.  ~P X
)
11103adant3 1011 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  ~P X )
12 0fin 7737 . . . . . . 7  |-  (/)  e.  Fin
1312a1i 11 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (/)  e.  Fin )
14 difeq2 3609 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
15 difid 3888 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
1614, 15syl6eq 2517 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
1716eleq1d 2529 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
1817elrab 3254 . . . . . 6  |-  ( A  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( A  e.  ~P X  /\  (/)  e.  Fin ) )
1911, 13, 18sylanbrc 664 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
20 ssel 3491 . . . . 5  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  A  e.  f ) )
2119, 20syl5com 30 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  A  e.  f ) )
22 intss 4296 . . . . . 6  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_ 
|^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
23 neldifsn 4147 . . . . . . . . . 10  |-  -.  y  e.  ( A  \  {
y } )
24 elinti 4284 . . . . . . . . . 10  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  ( ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  y  e.  ( A  \  { y } ) ) )
2523, 24mtoi 178 . . . . . . . . 9  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  -.  ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
26 simp2 992 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  C_  X )
2726ssdifssd 3635 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  C_  X )
28 elpw2g 4603 . . . . . . . . . . . 12  |-  ( X  e.  B  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
29283ad2ant1 1012 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
3027, 29mpbird 232 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  ~P X
)
31 snfi 7586 . . . . . . . . . . . 12  |-  { y }  e.  Fin
32 eldif 3479 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) ) )
33 eldif 3479 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A  \  { y } )  <-> 
( x  e.  A  /\  -.  x  e.  {
y } ) )
3433notbii 296 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  ( A 
\  { y } )  <->  -.  ( x  e.  A  /\  -.  x  e.  { y } ) )
35 iman 424 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  ->  x  e.  { y } )  <->  -.  (
x  e.  A  /\  -.  x  e.  { y } ) )
3634, 35bitr4i 252 . . . . . . . . . . . . . . . 16  |-  ( -.  x  e.  ( A 
\  { y } )  <->  ( x  e.  A  ->  x  e.  { y } ) )
3736anbi2i 694 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) )  <->  ( x  e.  A  /\  (
x  e.  A  ->  x  e.  { y } ) ) )
3832, 37bitri 249 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) ) )
39 pm3.35 587 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) )  ->  x  e.  { y } )
4038, 39sylbi 195 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  ->  x  e.  {
y } )
4140ssriv 3501 . . . . . . . . . . . 12  |-  ( A 
\  ( A  \  { y } ) )  C_  { y }
42 ssfi 7730 . . . . . . . . . . . 12  |-  ( ( { y }  e.  Fin  /\  ( A  \ 
( A  \  {
y } ) ) 
C_  { y } )  ->  ( A  \  ( A  \  {
y } ) )  e.  Fin )
4331, 41, 42mp2an 672 . . . . . . . . . . 11  |-  ( A 
\  ( A  \  { y } ) )  e.  Fin
4443a1i 11 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  ( A  \  { y } ) )  e.  Fin )
45 difeq2 3609 . . . . . . . . . . . 12  |-  ( x  =  ( A  \  { y } )  ->  ( A  \  x )  =  ( A  \  ( A 
\  { y } ) ) )
4645eleq1d 2529 . . . . . . . . . . 11  |-  ( x  =  ( A  \  { y } )  ->  ( ( A 
\  x )  e. 
Fin 
<->  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4746elrab 3254 . . . . . . . . . 10  |-  ( ( A  \  { y } )  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( ( A  \  { y } )  e.  ~P X  /\  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4830, 44, 47sylanbrc 664 . . . . . . . . 9  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
4925, 48nsyl3 119 . . . . . . . 8  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  -.  y  e.  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
5049eq0rdv 3813 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  =  (/) )
5150sseq2d 3525 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( |^| f  C_  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <->  |^| f  C_  (/) ) )
5222, 51syl5ib 219 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_  (/) ) )
53 ss0 3809 . . . . 5  |-  ( |^| f  C_  (/)  ->  |^| f  =  (/) )
5452, 53syl6 33 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  =  (/) ) )
5521, 54jcad 533 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  f  /\  |^| f  =  (/) ) ) )
5655reximdv 2930 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( E. f  e.  ( UFil `  X ) { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) ) )
578, 56mpd 15 1  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808   {crab 2811    \ cdif 3466    C_ wss 3469   (/)c0 3778   ~Pcpw 4003   {csn 4020   |^|cint 4275   class class class wbr 4440   ` cfv 5579   omcom 6671    ~<_ cdom 7504   Fincfn 7506   Filcfil 20074   UFilcufil 20128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-ac2 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-rpss 6555  df-om 6672  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-card 8309  df-ac 8486  df-cda 8537  df-fbas 18180  df-fg 18181  df-fil 20075  df-ufil 20130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator