MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Structured version   Unicode version

Theorem ufinffr 20886
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Distinct variable groups:    A, f    B, f    f, X

Proof of Theorem ufinffr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 7737 . . . . 5  |-  -.  om  e.  Fin
2 domfi 7746 . . . . . 6  |-  ( ( A  e.  Fin  /\  om  ~<_  A )  ->  om  e.  Fin )
32expcom 436 . . . . 5  |-  ( om  ~<_  A  ->  ( A  e.  Fin  ->  om  e.  Fin ) )
41, 3mtoi 181 . . . 4  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
5 cfinfil 20850 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
64, 5syl3an3 1299 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X ) )
7 filssufil 20869 . . 3  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
86, 7syl 17 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
9 elpw2g 4530 . . . . . . . 8  |-  ( X  e.  B  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
109biimpar 487 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X )  ->  A  e.  ~P X
)
11103adant3 1025 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  ~P X )
12 0fin 7752 . . . . . . 7  |-  (/)  e.  Fin
1312a1i 11 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (/)  e.  Fin )
14 difeq2 3520 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
15 difid 3808 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
1614, 15syl6eq 2478 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
1716eleq1d 2490 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
1817elrab 3171 . . . . . 6  |-  ( A  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( A  e.  ~P X  /\  (/)  e.  Fin ) )
1911, 13, 18sylanbrc 668 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
20 ssel 3401 . . . . 5  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  A  e.  f ) )
2119, 20syl5com 31 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  A  e.  f ) )
22 intss 4219 . . . . . 6  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_ 
|^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
23 neldifsn 4070 . . . . . . . . . 10  |-  -.  y  e.  ( A  \  {
y } )
24 elinti 4207 . . . . . . . . . 10  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  ( ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  y  e.  ( A  \  { y } ) ) )
2523, 24mtoi 181 . . . . . . . . 9  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  -.  ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
26 simp2 1006 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  C_  X )
2726ssdifssd 3546 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  C_  X )
28 elpw2g 4530 . . . . . . . . . . . 12  |-  ( X  e.  B  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
29283ad2ant1 1026 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
3027, 29mpbird 235 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  ~P X
)
31 snfi 7604 . . . . . . . . . . . 12  |-  { y }  e.  Fin
32 eldif 3389 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) ) )
33 eldif 3389 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A  \  { y } )  <-> 
( x  e.  A  /\  -.  x  e.  {
y } ) )
3433notbii 297 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  ( A 
\  { y } )  <->  -.  ( x  e.  A  /\  -.  x  e.  { y } ) )
35 iman 425 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  ->  x  e.  { y } )  <->  -.  (
x  e.  A  /\  -.  x  e.  { y } ) )
3634, 35bitr4i 255 . . . . . . . . . . . . . . . 16  |-  ( -.  x  e.  ( A 
\  { y } )  <->  ( x  e.  A  ->  x  e.  { y } ) )
3736anbi2i 698 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) )  <->  ( x  e.  A  /\  (
x  e.  A  ->  x  e.  { y } ) ) )
3832, 37bitri 252 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) ) )
39 pm3.35 589 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) )  ->  x  e.  { y } )
4038, 39sylbi 198 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  ->  x  e.  {
y } )
4140ssriv 3411 . . . . . . . . . . . 12  |-  ( A 
\  ( A  \  { y } ) )  C_  { y }
42 ssfi 7745 . . . . . . . . . . . 12  |-  ( ( { y }  e.  Fin  /\  ( A  \ 
( A  \  {
y } ) ) 
C_  { y } )  ->  ( A  \  ( A  \  {
y } ) )  e.  Fin )
4331, 41, 42mp2an 676 . . . . . . . . . . 11  |-  ( A 
\  ( A  \  { y } ) )  e.  Fin
4443a1i 11 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  ( A  \  { y } ) )  e.  Fin )
45 difeq2 3520 . . . . . . . . . . . 12  |-  ( x  =  ( A  \  { y } )  ->  ( A  \  x )  =  ( A  \  ( A 
\  { y } ) ) )
4645eleq1d 2490 . . . . . . . . . . 11  |-  ( x  =  ( A  \  { y } )  ->  ( ( A 
\  x )  e. 
Fin 
<->  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4746elrab 3171 . . . . . . . . . 10  |-  ( ( A  \  { y } )  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( ( A  \  { y } )  e.  ~P X  /\  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4830, 44, 47sylanbrc 668 . . . . . . . . 9  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
4925, 48nsyl3 122 . . . . . . . 8  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  -.  y  e.  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
5049eq0rdv 3742 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  =  (/) )
5150sseq2d 3435 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( |^| f  C_  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <->  |^| f  C_  (/) ) )
5222, 51syl5ib 222 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_  (/) ) )
53 ss0 3738 . . . . 5  |-  ( |^| f  C_  (/)  ->  |^| f  =  (/) )
5452, 53syl6 34 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  =  (/) ) )
5521, 54jcad 535 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  f  /\  |^| f  =  (/) ) ) )
5655reximdv 2838 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( E. f  e.  ( UFil `  X ) { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) ) )
578, 56mpd 15 1  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   E.wrex 2715   {crab 2718    \ cdif 3376    C_ wss 3379   (/)c0 3704   ~Pcpw 3924   {csn 3941   |^|cint 4198   class class class wbr 4366   ` cfv 5544   omcom 6650    ~<_ cdom 7522   Fincfn 7524   Filcfil 20802   UFilcufil 20856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-ac2 8844
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-rpss 6529  df-om 6651  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fi 7878  df-card 8325  df-ac 8498  df-cda 8549  df-fbas 18910  df-fg 18911  df-fil 20803  df-ufil 20858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator