MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilmax Structured version   Unicode version

Theorem ufilmax 20274
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilmax  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  F  =  G )

Proof of Theorem ufilmax
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp3 997 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  F  C_  G
)
2 filelss 20219 . . . . . 6  |-  ( ( G  e.  ( Fil `  X )  /\  x  e.  G )  ->  x  C_  X )
32ex 434 . . . . 5  |-  ( G  e.  ( Fil `  X
)  ->  ( x  e.  G  ->  x  C_  X ) )
433ad2ant2 1017 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  e.  G  ->  x  C_  X ) )
5 ufilb 20273 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( -.  x  e.  F  <->  ( X  \  x )  e.  F ) )
653ad2antl1 1157 . . . . . . . 8  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( -.  x  e.  F  <->  ( X  \  x )  e.  F
) )
7 simpl3 1000 . . . . . . . . . 10  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  ->  F  C_  G )
87sseld 3485 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( ( X  \  x )  e.  F  ->  ( X  \  x
)  e.  G ) )
9 filfbas 20215 . . . . . . . . . . . . 13  |-  ( G  e.  ( Fil `  X
)  ->  G  e.  ( fBas `  X )
)
10 fbncp 20206 . . . . . . . . . . . . . 14  |-  ( ( G  e.  ( fBas `  X )  /\  x  e.  G )  ->  -.  ( X  \  x
)  e.  G )
1110ex 434 . . . . . . . . . . . . 13  |-  ( G  e.  ( fBas `  X
)  ->  ( x  e.  G  ->  -.  ( X  \  x )  e.  G ) )
129, 11syl 16 . . . . . . . . . . . 12  |-  ( G  e.  ( Fil `  X
)  ->  ( x  e.  G  ->  -.  ( X  \  x )  e.  G ) )
1312con2d 115 . . . . . . . . . . 11  |-  ( G  e.  ( Fil `  X
)  ->  ( ( X  \  x )  e.  G  ->  -.  x  e.  G ) )
14133ad2ant2 1017 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( ( X  \  x )  e.  G  ->  -.  x  e.  G ) )
1514adantr 465 . . . . . . . . 9  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( ( X  \  x )  e.  G  ->  -.  x  e.  G
) )
168, 15syld 44 . . . . . . . 8  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( ( X  \  x )  e.  F  ->  -.  x  e.  G
) )
176, 16sylbid 215 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( -.  x  e.  F  ->  -.  x  e.  G ) )
1817con4d 105 . . . . . 6  |-  ( ( ( F  e.  (
UFil `  X )  /\  G  e.  ( Fil `  X )  /\  F  C_  G )  /\  x  C_  X )  -> 
( x  e.  G  ->  x  e.  F ) )
1918ex 434 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  C_  X  ->  ( x  e.  G  ->  x  e.  F ) ) )
2019com23 78 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  e.  G  ->  ( x 
C_  X  ->  x  e.  F ) ) )
214, 20mpdd 40 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  ( x  e.  G  ->  x  e.  F ) )
2221ssrdv 3492 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  G  C_  F
)
231, 22eqssd 3503 1  |-  ( ( F  e.  ( UFil `  X )  /\  G  e.  ( Fil `  X
)  /\  F  C_  G
)  ->  F  =  G )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    \ cdif 3455    C_ wss 3458   ` cfv 5574   fBascfbas 18274   Filcfil 20212   UFilcufil 20266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fv 5582  df-fbas 18284  df-fil 20213  df-ufil 20268
This theorem is referenced by:  isufil2  20275  ufileu  20286  uffixfr  20290  fmufil  20326  uffclsflim  20398
  Copyright terms: Public domain W3C validator