MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufileu Structured version   Unicode version

Theorem ufileu 19392
Description: If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009.) (Revised by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ufileu  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( UFil `  X
)  <->  E! f  e.  (
UFil `  X ) F  C_  f ) )
Distinct variable groups:    f, F    f, X

Proof of Theorem ufileu
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 19377 . . . . 5  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( Fil `  X ) )
2 ufilmax 19380 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
)  /\  F  C_  f
)  ->  F  =  f )
323expa 1182 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  f  e.  ( Fil `  X ) )  /\  F  C_  f
)  ->  F  =  f )
43eqcomd 2446 . . . . . 6  |-  ( ( ( F  e.  (
UFil `  X )  /\  f  e.  ( Fil `  X ) )  /\  F  C_  f
)  ->  f  =  F )
54ex 434 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
) )  ->  ( F  C_  f  ->  f  =  F ) )
61, 5sylan2 471 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( UFil `  X
) )  ->  ( F  C_  f  ->  f  =  F ) )
76ralrimiva 2797 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  A. f  e.  ( UFil `  X
) ( F  C_  f  ->  f  =  F ) )
8 ssid 3372 . . . 4  |-  F  C_  F
9 sseq2 3375 . . . . 5  |-  ( f  =  F  ->  ( F  C_  f  <->  F  C_  F
) )
109eqreu 3148 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  C_  F  /\  A. f  e.  ( UFil `  X
) ( F  C_  f  ->  f  =  F ) )  ->  E! f  e.  ( UFil `  X ) F  C_  f )
118, 10mp3an2 1297 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  ->  f  =  F ) )  ->  E! f  e.  ( UFil `  X ) F 
C_  f )
127, 11mpdan 663 . 2  |-  ( F  e.  ( UFil `  X
)  ->  E! f  e.  ( UFil `  X
) F  C_  f
)
13 reu6 3145 . . 3  |-  ( E! f  e.  ( UFil `  X ) F  C_  f 
<->  E. g  e.  (
UFil `  X ) A. f  e.  ( UFil `  X ) ( F  C_  f  <->  f  =  g ) )
14 ibibr 343 . . . . . . . . . . 11  |-  ( ( f  =  g  ->  F  C_  f )  <->  ( f  =  g  ->  ( F 
C_  f  <->  f  =  g ) ) )
1514pm5.74ri 246 . . . . . . . . . 10  |-  ( f  =  g  ->  ( F  C_  f  <->  ( F  C_  f  <->  f  =  g ) ) )
16 sseq2 3375 . . . . . . . . . 10  |-  ( f  =  g  ->  ( F  C_  f  <->  F  C_  g
) )
1715, 16bitr3d 255 . . . . . . . . 9  |-  ( f  =  g  ->  (
( F  C_  f  <->  f  =  g )  <->  F  C_  g
) )
1817rspcva 3068 . . . . . . . 8  |-  ( ( g  e.  ( UFil `  X )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  <->  f  =  g ) )  ->  F  C_  g )
1918adantll 708 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  C_  g
)
20 ufilfil 19377 . . . . . . . . . . 11  |-  ( g  e.  ( UFil `  X
)  ->  g  e.  ( Fil `  X ) )
21 filelss 19325 . . . . . . . . . . . 12  |-  ( ( g  e.  ( Fil `  X )  /\  x  e.  g )  ->  x  C_  X )
2221ex 434 . . . . . . . . . . 11  |-  ( g  e.  ( Fil `  X
)  ->  ( x  e.  g  ->  x  C_  X ) )
2320, 22syl 16 . . . . . . . . . 10  |-  ( g  e.  ( UFil `  X
)  ->  ( x  e.  g  ->  x  C_  X ) )
2423ad2antlr 721 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  x  C_  X ) )
25 filsspw 19324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
2625ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  C_  ~P X )
27 difss 3480 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( X 
\  x )  C_  X
28 filtop 19328 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
2928ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  X  e.  F )
30 difexg 4437 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( X  e.  F  ->  ( X  \  x )  e. 
_V )
3129, 30syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  _V )
32 elpwg 3865 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( X  \  x )  e.  _V  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
3331, 32syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X  \  x )  e.  ~P X 
<->  ( X  \  x
)  C_  X )
)
3427, 33mpbiri 233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ~P X
)
3534snssd 4015 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  { ( X  \  x ) }  C_  ~P X )
3626, 35unssd 3529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ~P X )
37 ssun1 3516 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  C_  ( F  u.  { ( X  \  x ) } )
38 filn0 19335 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3938ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  =/=  (/) )
40 ssn0 3667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  C_  ( F  u.  { ( X  \  x ) } )  /\  F  =/=  (/) )  -> 
( F  u.  {
( X  \  x
) } )  =/=  (/) )
4137, 39, 40sylancr 658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  =/=  (/) )
42 filelss 19325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( F  e.  ( Fil `  X )  /\  f  e.  F )  ->  f  C_  X )
4342ad2ant2rl 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
f  C_  X )
44 df-ss 3339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f 
C_  X  <->  ( f  i^i  X )  =  f )
4543, 44sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( f  i^i  X
)  =  f )
4645sseq1d 3380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( ( f  i^i 
X )  C_  x  <->  f 
C_  x ) )
47 filss 19326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( F  e.  ( Fil `  X )  /\  (
f  e.  F  /\  x  C_  X  /\  f  C_  x ) )  ->  x  e.  F )
48473exp2 1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( F  e.  ( Fil `  X
)  ->  ( f  e.  F  ->  ( x 
C_  X  ->  (
f  C_  x  ->  x  e.  F ) ) ) )
4948com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( F  e.  ( Fil `  X
)  ->  ( x  C_  X  ->  ( f  e.  F  ->  ( f 
C_  x  ->  x  e.  F ) ) ) )
5049imp3a 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( F  e.  ( Fil `  X
)  ->  ( (
x  C_  X  /\  f  e.  F )  ->  ( f  C_  x  ->  x  e.  F ) ) )
5150adantr 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( F  e.  ( Fil `  X )  /\  g  e.  ( UFil `  X
) )  ->  (
( x  C_  X  /\  f  e.  F
)  ->  ( f  C_  x  ->  x  e.  F ) ) )
5251imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( f  C_  x  ->  x  e.  F ) )
5346, 52sylbid 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( ( f  i^i 
X )  C_  x  ->  x  e.  F ) )
5453con3d 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( -.  x  e.  F  ->  -.  (
f  i^i  X )  C_  x ) )
5554expr 612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  x  C_  X
)  ->  ( f  e.  F  ->  ( -.  x  e.  F  ->  -.  ( f  i^i  X
)  C_  x )
) )
5655com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  x  C_  X
)  ->  ( -.  x  e.  F  ->  ( f  e.  F  ->  -.  ( f  i^i  X
)  C_  x )
) )
5756impr 616 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( f  e.  F  ->  -.  ( f  i^i 
X )  C_  x
) )
5857imp 429 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  -.  ( f  i^i 
X )  C_  x
)
59 ineq2 3543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( g  =  ( X  \  x )  ->  (
f  i^i  g )  =  ( f  i^i  ( X  \  x
) ) )
6059neeq1d 2619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( g  =  ( X  \  x )  ->  (
( f  i^i  g
)  =/=  (/)  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) ) )
6160ralsng 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( X  \  x )  e.  _V  ->  ( A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/)  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) ) )
62 inssdif0 3743 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f  i^i  X ) 
C_  x  <->  ( f  i^i  ( X  \  x
) )  =  (/) )
6362necon3bbii 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -.  ( f  i^i  X
)  C_  x  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) )
6461, 63syl6bbr 263 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( X  \  x )  e.  _V  ->  ( A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/)  <->  -.  (
f  i^i  X )  C_  x ) )
6531, 64syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( A. g  e. 
{ ( X  \  x ) }  (
f  i^i  g )  =/=  (/)  <->  -.  ( f  i^i  X )  C_  x
) )
6665adantr 462 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  ( A. g  e. 
{ ( X  \  x ) }  (
f  i^i  g )  =/=  (/)  <->  -.  ( f  i^i  X )  C_  x
) )
6758, 66mpbird 232 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  A. g  e.  {
( X  \  x
) }  ( f  i^i  g )  =/=  (/) )
6867ralrimiva 2797 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/) )
69 filfbas 19321 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
7069ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  e.  ( fBas `  X ) )
71 difssd 3481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  C_  X )
72 ssdif0 3734 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( X 
C_  x  <->  ( X  \  x )  =  (/) )
73 eqss 3368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  X  <->  ( x  C_  X  /\  X  C_  x ) )
7473simplbi2 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x 
C_  X  ->  ( X  C_  x  ->  x  =  X ) )
75 eleq1 2501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  =  X  ->  (
x  e.  F  <->  X  e.  F ) )
7675notbid 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  X  ->  ( -.  x  e.  F  <->  -.  X  e.  F ) )
7776biimpcd 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( -.  x  e.  F  -> 
( x  =  X  ->  -.  X  e.  F ) )
7874, 77sylan9 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  C_  X  /\  -.  x  e.  F
)  ->  ( X  C_  x  ->  -.  X  e.  F ) )
7978adantl 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  C_  x  ->  -.  X  e.  F
) )
8072, 79syl5bir 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X  \  x )  =  (/)  ->  -.  X  e.  F
) )
8180necon2ad 2657 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  e.  F  ->  ( X  \  x
)  =/=  (/) ) )
8229, 81mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  =/=  (/) )
83 snfbas 19339 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( X  \  x
)  C_  X  /\  ( X  \  x
)  =/=  (/)  /\  X  e.  F )  ->  { ( X  \  x ) }  e.  ( fBas `  X ) )
8471, 82, 29, 83syl3anc 1213 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  { ( X  \  x ) }  e.  ( fBas `  X )
)
85 fbunfip 19342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F  e.  ( fBas `  X )  /\  {
( X  \  x
) }  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  { ( X  \  x ) } ) )  <->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  (
f  i^i  g )  =/=  (/) ) )
8670, 84, 85syl2anc 656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( -.  (/)  e.  ( fi `  ( F  u.  { ( X 
\  x ) } ) )  <->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  (
f  i^i  g )  =/=  (/) ) )
8768, 86mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  -.  (/)  e.  ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )
88 fsubbas 19340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  F  ->  (
( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  (
fBas `  X )  <->  ( ( F  u.  {
( X  \  x
) } )  C_  ~P X  /\  ( F  u.  { ( X  \  x ) } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) ) )
8929, 88syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  { ( X 
\  x ) } )  C_  ~P X  /\  ( F  u.  {
( X  \  x
) } )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) ) ) )
9036, 41, 87, 89mpbir3and 1166 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  (
fBas `  X )
)
91 fgcl 19351 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( fi `  ( F  u.  { ( X 
\  x ) } ) )  e.  (
fBas `  X )  ->  ( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  e.  ( Fil `  X ) )
9290, 91syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  e.  ( Fil `  X ) )
93 filssufil 19385 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f )
9492, 93syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  E. f  e.  ( UFil `  X ) ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )
95 r19.29 2855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. f  e.  (
UFil `  X )
( F  C_  f  <->  f  =  g )  /\  E. f  e.  ( UFil `  X ) ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  f )  ->  E. f  e.  ( UFil `  X
) ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f ) )
96 bi1 186 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  C_  f  <->  f  =  g )  ->  ( F  C_  f  ->  f  =  g ) )
97 simpll 748 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  e.  ( Fil `  X ) )
98 snex 4530 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { ( X  \  x ) }  e.  _V
99 unexg 6380 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  ( Fil `  X )  /\  {
( X  \  x
) }  e.  _V )  ->  ( F  u.  { ( X  \  x
) } )  e. 
_V )
10097, 98, 99sylancl 657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  e. 
_V )
101 ssfii 7665 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F  u.  { ( X  \  x ) } )  e.  _V  ->  ( F  u.  {
( X  \  x
) } )  C_  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )
102100, 101syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )
103 ssfg 19345 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( fi `  ( F  u.  { ( X 
\  x ) } ) )  e.  (
fBas `  X )  ->  ( fi `  ( F  u.  { ( X  \  x ) } ) )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
10490, 103syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( fi `  ( F  u.  { ( X  \  x ) } ) )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
105102, 104sstrd 3363 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
106105unssad 3530 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  C_  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) ) )
107 sstr2 3360 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F 
C_  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  F  C_  f
) )
108106, 107syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  F  C_  f
) )
109108imim1d 75 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( F  C_  f  ->  f  =  g )  ->  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f  ->  f  =  g ) ) )
110 sseq2 3375 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  g  ->  (
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  f  <->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  g ) )
111110biimpcd 224 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f  ->  (
f  =  g  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
112111a2i 13 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  f  ->  f  =  g )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) )
11396, 109, 112syl56 34 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( F  C_  f 
<->  f  =  g )  ->  ( ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  f  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) ) )
114113imp3a 431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
115114rexlimdvw 2842 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( E. f  e.  ( UFil `  X
) ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
11695, 115syl5 32 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  /\  E. f  e.  ( UFil `  X
) ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f )  ->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  g ) )
11794, 116mpan2d 669 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) )
118117imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  <->  f  =  g ) )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
119118an32s 797 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  g )
120 snidg 3900 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  \  x )  e.  _V  ->  ( X  \  x )  e. 
{ ( X  \  x ) } )
12131, 120syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  { ( X  \  x ) } )
122 elun2 3521 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  \  x )  e.  { ( X 
\  x ) }  ->  ( X  \  x )  e.  ( F  u.  { ( X  \  x ) } ) )
123121, 122syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ( F  u.  { ( X 
\  x ) } ) )
124105, 123sseldd 3354 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
125124adantlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X  \  x )  e.  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
126119, 125sseldd 3354 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X  \  x )  e.  g )
127 simpllr 753 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  g  e.  ( UFil `  X )
)
128 simprl 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  x  C_  X
)
129 ufilb 19379 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( -.  x  e.  g  <->  ( X  \  x )  e.  g ) )
130127, 128, 129syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( -.  x  e.  g  <->  ( X  \  x )  e.  g ) )
131126, 130mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  -.  x  e.  g )
132131expr 612 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  x  C_  X )  ->  ( -.  x  e.  F  ->  -.  x  e.  g ) )
133132con4d 105 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  x  C_  X )  ->  (
x  e.  g  ->  x  e.  F )
)
134133ex 434 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  C_  X  ->  ( x  e.  g  ->  x  e.  F ) ) )
135134com23 78 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  ( x 
C_  X  ->  x  e.  F ) ) )
13624, 135mpdd 40 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  x  e.  F ) )
137136ssrdv 3359 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  g  C_  F )
13819, 137eqssd 3370 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  =  g )
139 simplr 749 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  g  e.  ( UFil `  X )
)
140138, 139eqeltrd 2515 . . . . 5  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  e.  ( UFil `  X )
)
141140ex 434 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  g  e.  ( UFil `  X
) )  ->  ( A. f  e.  ( UFil `  X ) ( F  C_  f  <->  f  =  g )  ->  F  e.  ( UFil `  X
) ) )
142141rexlimdva 2839 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( E. g  e.  ( UFil `  X ) A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  ->  F  e.  (
UFil `  X )
) )
14313, 142syl5bi 217 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( E! f  e.  ( UFil `  X ) F  C_  f  ->  F  e.  (
UFil `  X )
) )
14412, 143impbid2 204 1  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( UFil `  X
)  <->  E! f  e.  (
UFil `  X ) F  C_  f ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   E!wreu 2715   _Vcvv 2970    \ cdif 3322    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   ` cfv 5415  (class class class)co 6090   ficfi 7656   fBascfbas 17704   filGencfg 17705   Filcfil 19318   UFilcufil 19372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-ac2 8628
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-rpss 6359  df-om 6476  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-fin 7310  df-fi 7657  df-card 8105  df-ac 8282  df-cda 8333  df-fbas 17714  df-fg 17715  df-fil 19319  df-ufil 19374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator