MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Unicode version

Theorem ufilen 20556
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Distinct variable group:    x, f, X

Proof of Theorem ufilen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 reldom 7541 . . . . . 6  |-  Rel  ~<_
21brrelex2i 5050 . . . . 5  |-  ( om  ~<_  X  ->  X  e.  _V )
3 numth3 8867 . . . . 5  |-  ( X  e.  _V  ->  X  e.  dom  card )
42, 3syl 16 . . . 4  |-  ( om  ~<_  X  ->  X  e.  dom  card )
5 csdfil 20520 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  e.  ( Fil `  X
) )
64, 5mpancom 669 . . 3  |-  ( om  ~<_  X  ->  { y  e.  ~P X  |  ( X  \  y ) 
~<  X }  e.  ( Fil `  X ) )
7 filssufil 20538 . . 3  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
86, 7syl 16 . 2  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
9 elfvex 5899 . . . . . . 7  |-  ( f  e.  ( UFil `  X
)  ->  X  e.  _V )
109ad2antlr 726 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  X  e.  _V )
11 ufilfil 20530 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( Fil `  X ) )
12 filelss 20478 . . . . . . . 8  |-  ( ( f  e.  ( Fil `  X )  /\  x  e.  f )  ->  x  C_  X )
1311, 12sylan 471 . . . . . . 7  |-  ( ( f  e.  ( UFil `  X )  /\  x  e.  f )  ->  x  C_  X )
1413adantll 713 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  C_  X )
15 ssdomg 7580 . . . . . 6  |-  ( X  e.  _V  ->  (
x  C_  X  ->  x  ~<_  X ) )
1610, 14, 15sylc 60 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  ~<_  X )
17 filfbas 20474 . . . . . . . . 9  |-  ( f  e.  ( Fil `  X
)  ->  f  e.  ( fBas `  X )
)
1811, 17syl 16 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( fBas `  X )
)
1918adantl 466 . . . . . . 7  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  f  e.  ( fBas `  X
) )
20 fbncp 20465 . . . . . . 7  |-  ( ( f  e.  ( fBas `  X )  /\  x  e.  f )  ->  -.  ( X  \  x
)  e.  f )
2119, 20sylan 471 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  -.  ( X  \  x )  e.  f )
22 difss 3627 . . . . . . . . . . . . . 14  |-  ( X 
\  x )  C_  X
23 elpw2g 4619 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
2422, 23mpbiri 233 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  x )  e. 
~P X )
25243ad2ant1 1017 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
~P X )
26 simp2 997 . . . . . . . . . . . . . 14  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  C_  X )
27 dfss4 3739 . . . . . . . . . . . . . 14  |-  ( x 
C_  X  <->  ( X  \  ( X  \  x
) )  =  x )
2826, 27sylib 196 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  =  x )
29 simp3 998 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  ~<  X )
3028, 29eqbrtrd 4476 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  ~<  X )
31 difeq2 3612 . . . . . . . . . . . . . 14  |-  ( y  =  ( X  \  x )  ->  ( X  \  y )  =  ( X  \  ( X  \  x ) ) )
3231breq1d 4466 . . . . . . . . . . . . 13  |-  ( y  =  ( X  \  x )  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  ( X  \  x
) )  ~<  X ) )
3332elrab 3257 . . . . . . . . . . . 12  |-  ( ( X  \  x )  e.  { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  <->  ( ( X  \  x )  e. 
~P X  /\  ( X  \  ( X  \  x ) )  ~<  X ) )
3425, 30, 33sylanbrc 664 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }
)
35 ssel 3493 . . . . . . . . . . 11  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  ( ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }  ->  ( X  \  x
)  e.  f ) )
3634, 35syl5com 30 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
37363expa 1196 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  x  ~<  X )  ->  ( { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
3837impancom 440 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  (
x  ~<  X  ->  ( X  \  x )  e.  f ) )
3938con3d 133 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  ( -.  ( X  \  x
)  e.  f  ->  -.  x  ~<  X ) )
4039impancom 440 . . . . . 6  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  -.  ( X  \  x )  e.  f )  ->  ( {
y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  -.  x  ~<  X ) )
4110, 14, 21, 40syl21anc 1227 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  -.  x  ~<  X ) )
42 bren2 7565 . . . . . 6  |-  ( x 
~~  X  <->  ( x  ~<_  X  /\  -.  x  ~<  X ) )
4342simplbi2 625 . . . . 5  |-  ( x  ~<_  X  ->  ( -.  x  ~<  X  ->  x  ~~  X ) )
4416, 41, 43sylsyld 56 . . . 4  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  x  ~~  X ) )
4544ralrimdva 2875 . . 3  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  A. x  e.  f  x  ~~  X ) )
4645reximdva 2932 . 2  |-  ( om  ~<_  X  ->  ( E. f  e.  ( UFil `  X ) { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  E. f  e.  (
UFil `  X ) A. x  e.  f  x  ~~  X ) )
478, 46mpd 15 1  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468    C_ wss 3471   ~Pcpw 4015   class class class wbr 4456   dom cdm 5008   ` cfv 5594   omcom 6699    ~~ cen 7532    ~<_ cdom 7533    ~< csdm 7534   cardccrd 8333   fBascfbas 18532   Filcfil 20471   UFilcufil 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-ac2 8860
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-rpss 6579  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fi 7889  df-oi 7953  df-card 8337  df-ac 8514  df-cda 8565  df-fbas 18542  df-fg 18543  df-fil 20472  df-ufil 20527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator