MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Structured version   Unicode version

Theorem ufilen 20166
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Distinct variable group:    x, f, X

Proof of Theorem ufilen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 reldom 7519 . . . . . 6  |-  Rel  ~<_
21brrelex2i 5040 . . . . 5  |-  ( om  ~<_  X  ->  X  e.  _V )
3 numth3 8846 . . . . 5  |-  ( X  e.  _V  ->  X  e.  dom  card )
42, 3syl 16 . . . 4  |-  ( om  ~<_  X  ->  X  e.  dom  card )
5 csdfil 20130 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  e.  ( Fil `  X
) )
64, 5mpancom 669 . . 3  |-  ( om  ~<_  X  ->  { y  e.  ~P X  |  ( X  \  y ) 
~<  X }  e.  ( Fil `  X ) )
7 filssufil 20148 . . 3  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
86, 7syl 16 . 2  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
9 elfvex 5891 . . . . . . 7  |-  ( f  e.  ( UFil `  X
)  ->  X  e.  _V )
109ad2antlr 726 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  X  e.  _V )
11 ufilfil 20140 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( Fil `  X ) )
12 filelss 20088 . . . . . . . 8  |-  ( ( f  e.  ( Fil `  X )  /\  x  e.  f )  ->  x  C_  X )
1311, 12sylan 471 . . . . . . 7  |-  ( ( f  e.  ( UFil `  X )  /\  x  e.  f )  ->  x  C_  X )
1413adantll 713 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  C_  X )
15 ssdomg 7558 . . . . . 6  |-  ( X  e.  _V  ->  (
x  C_  X  ->  x  ~<_  X ) )
1610, 14, 15sylc 60 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  ~<_  X )
17 filfbas 20084 . . . . . . . . 9  |-  ( f  e.  ( Fil `  X
)  ->  f  e.  ( fBas `  X )
)
1811, 17syl 16 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( fBas `  X )
)
1918adantl 466 . . . . . . 7  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  f  e.  ( fBas `  X
) )
20 fbncp 20075 . . . . . . 7  |-  ( ( f  e.  ( fBas `  X )  /\  x  e.  f )  ->  -.  ( X  \  x
)  e.  f )
2119, 20sylan 471 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  -.  ( X  \  x )  e.  f )
22 difss 3631 . . . . . . . . . . . . . 14  |-  ( X 
\  x )  C_  X
23 elpw2g 4610 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
2422, 23mpbiri 233 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  x )  e. 
~P X )
25243ad2ant1 1017 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
~P X )
26 simp2 997 . . . . . . . . . . . . . 14  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  C_  X )
27 dfss4 3732 . . . . . . . . . . . . . 14  |-  ( x 
C_  X  <->  ( X  \  ( X  \  x
) )  =  x )
2826, 27sylib 196 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  =  x )
29 simp3 998 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  ~<  X )
3028, 29eqbrtrd 4467 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  ~<  X )
31 difeq2 3616 . . . . . . . . . . . . . 14  |-  ( y  =  ( X  \  x )  ->  ( X  \  y )  =  ( X  \  ( X  \  x ) ) )
3231breq1d 4457 . . . . . . . . . . . . 13  |-  ( y  =  ( X  \  x )  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  ( X  \  x
) )  ~<  X ) )
3332elrab 3261 . . . . . . . . . . . 12  |-  ( ( X  \  x )  e.  { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  <->  ( ( X  \  x )  e. 
~P X  /\  ( X  \  ( X  \  x ) )  ~<  X ) )
3425, 30, 33sylanbrc 664 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }
)
35 ssel 3498 . . . . . . . . . . 11  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  ( ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }  ->  ( X  \  x
)  e.  f ) )
3634, 35syl5com 30 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
37363expa 1196 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  x  ~<  X )  ->  ( { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
3837impancom 440 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  (
x  ~<  X  ->  ( X  \  x )  e.  f ) )
3938con3d 133 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  ( -.  ( X  \  x
)  e.  f  ->  -.  x  ~<  X ) )
4039impancom 440 . . . . . 6  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  -.  ( X  \  x )  e.  f )  ->  ( {
y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  -.  x  ~<  X ) )
4110, 14, 21, 40syl21anc 1227 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  -.  x  ~<  X ) )
42 bren2 7543 . . . . . 6  |-  ( x 
~~  X  <->  ( x  ~<_  X  /\  -.  x  ~<  X ) )
4342simplbi2 625 . . . . 5  |-  ( x  ~<_  X  ->  ( -.  x  ~<  X  ->  x  ~~  X ) )
4416, 41, 43sylsyld 56 . . . 4  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  x  ~~  X ) )
4544ralrimdva 2882 . . 3  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  A. x  e.  f  x  ~~  X ) )
4645reximdva 2938 . 2  |-  ( om  ~<_  X  ->  ( E. f  e.  ( UFil `  X ) { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  E. f  e.  (
UFil `  X ) A. x  e.  f  x  ~~  X ) )
478, 46mpd 15 1  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    \ cdif 3473    C_ wss 3476   ~Pcpw 4010   class class class wbr 4447   dom cdm 4999   ` cfv 5586   omcom 6678    ~~ cen 7510    ~<_ cdom 7511    ~< csdm 7512   cardccrd 8312   fBascfbas 18177   Filcfil 20081   UFilcufil 20135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-ac2 8839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-rpss 6562  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-oi 7931  df-card 8316  df-ac 8493  df-cda 8544  df-fbas 18187  df-fg 18188  df-fil 20082  df-ufil 20137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator