MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildr Structured version   Unicode version

Theorem ufildr 20195
Description: An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Hypothesis
Ref Expression
ufildr.1  |-  J  =  ( F  u.  { (/)
} )
Assertion
Ref Expression
ufildr  |-  ( F  e.  ( UFil `  X
)  ->  ( J  u.  ( Clsd `  J
) )  =  ~P X )

Proof of Theorem ufildr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elssuni 4275 . . . . . 6  |-  ( x  e.  J  ->  x  C_ 
U. J )
2 ufildr.1 . . . . . . . . . 10  |-  J  =  ( F  u.  { (/)
} )
32unieqi 4254 . . . . . . . . 9  |-  U. J  =  U. ( F  u.  {
(/) } )
4 uniun 4264 . . . . . . . . . 10  |-  U. ( F  u.  { (/) } )  =  ( U. F  u.  U. { (/) } )
5 0ex 4577 . . . . . . . . . . . 12  |-  (/)  e.  _V
65unisn 4260 . . . . . . . . . . 11  |-  U. { (/)
}  =  (/)
76uneq2i 3655 . . . . . . . . . 10  |-  ( U. F  u.  U. { (/) } )  =  ( U. F  u.  (/) )
8 un0 3810 . . . . . . . . . 10  |-  ( U. F  u.  (/) )  = 
U. F
94, 7, 83eqtri 2500 . . . . . . . . 9  |-  U. ( F  u.  { (/) } )  =  U. F
103, 9eqtr2i 2497 . . . . . . . 8  |-  U. F  =  U. J
11 ufilfil 20168 . . . . . . . . 9  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
12 filunibas 20145 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
1311, 12syl 16 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
1410, 13syl5reqr 2523 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  X  =  U. J )
1514sseq2d 3532 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  ( x  C_  X  <->  x  C_  U. J
) )
161, 15syl5ibr 221 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  J  ->  x  C_  X ) )
17 eqid 2467 . . . . . . 7  |-  U. J  =  U. J
1817cldss 19324 . . . . . 6  |-  ( x  e.  ( Clsd `  J
)  ->  x  C_  U. J
)
1918, 15syl5ibr 221 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  ( Clsd `  J
)  ->  x  C_  X
) )
2016, 19jaod 380 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( (
x  e.  J  \/  x  e.  ( Clsd `  J ) )  ->  x  C_  X ) )
21 ufilss 20169 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
x  e.  F  \/  ( X  \  x
)  e.  F ) )
22 ssun1 3667 . . . . . . . . . 10  |-  F  C_  ( F  u.  { (/) } )
2322, 2sseqtr4i 3537 . . . . . . . . 9  |-  F  C_  J
2423a1i 11 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  F  C_  J )
2524sseld 3503 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
x  e.  F  ->  x  e.  J )
)
2624sseld 3503 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  F  -> 
( X  \  x
)  e.  J ) )
27 filcon 20147 . . . . . . . . . . . . 13  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  { (/) } )  e. 
Con )
28 contop 19712 . . . . . . . . . . . . 13  |-  ( ( F  u.  { (/) } )  e.  Con  ->  ( F  u.  { (/) } )  e.  Top )
2911, 27, 283syl 20 . . . . . . . . . . . 12  |-  ( F  e.  ( UFil `  X
)  ->  ( F  u.  { (/) } )  e. 
Top )
302, 29syl5eqel 2559 . . . . . . . . . . 11  |-  ( F  e.  ( UFil `  X
)  ->  J  e.  Top )
3130adantr 465 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  J  e.  Top )
3215biimpa 484 . . . . . . . . . 10  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  x  C_ 
U. J )
3317iscld2 19323 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( x  e.  ( Clsd `  J
)  <->  ( U. J  \  x )  e.  J
) )
3431, 32, 33syl2anc 661 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
x  e.  ( Clsd `  J )  <->  ( U. J  \  x )  e.  J ) )
3514difeq1d 3621 . . . . . . . . . . 11  |-  ( F  e.  ( UFil `  X
)  ->  ( X  \  x )  =  ( U. J  \  x
) )
3635eleq1d 2536 . . . . . . . . . 10  |-  ( F  e.  ( UFil `  X
)  ->  ( ( X  \  x )  e.  J  <->  ( U. J  \  x )  e.  J
) )
3736adantr 465 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  J  <->  ( U. J  \  x )  e.  J ) )
3834, 37bitr4d 256 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
x  e.  ( Clsd `  J )  <->  ( X  \  x )  e.  J
) )
3926, 38sylibrd 234 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( X  \  x
)  e.  F  ->  x  e.  ( Clsd `  J ) ) )
4025, 39orim12d 836 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
( x  e.  F  \/  ( X  \  x
)  e.  F )  ->  ( x  e.  J  \/  x  e.  ( Clsd `  J
) ) ) )
4121, 40mpd 15 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  x  C_  X )  ->  (
x  e.  J  \/  x  e.  ( Clsd `  J ) ) )
4241ex 434 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( x  C_  X  ->  ( x  e.  J  \/  x  e.  ( Clsd `  J
) ) ) )
4320, 42impbid 191 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( (
x  e.  J  \/  x  e.  ( Clsd `  J ) )  <->  x  C_  X
) )
44 elun 3645 . . 3  |-  ( x  e.  ( J  u.  ( Clsd `  J )
)  <->  ( x  e.  J  \/  x  e.  ( Clsd `  J
) ) )
45 selpw 4017 . . 3  |-  ( x  e.  ~P X  <->  x  C_  X
)
4643, 44, 453bitr4g 288 . 2  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  ( J  u.  ( Clsd `  J ) )  <-> 
x  e.  ~P X
) )
4746eqrdv 2464 1  |-  ( F  e.  ( UFil `  X
)  ->  ( J  u.  ( Clsd `  J
) )  =  ~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3473    u. cun 3474    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   ` cfv 5588   Topctop 19189   Clsdccld 19311   Conccon 19706   Filcfil 20109   UFilcufil 20163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-fv 5596  df-fbas 18215  df-top 19194  df-cld 19314  df-con 19707  df-fil 20110  df-ufil 20165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator