MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Structured version   Unicode version

Theorem ufildom1 20596
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  ~<_  1o )

Proof of Theorem ufildom1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq1 4442 . 2  |-  ( |^| F  =  (/)  ->  ( |^| F  ~<_  1o  <->  (/)  ~<_  1o ) )
2 uffixsn 20595 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  e.  F )
3 intss1 4286 . . . . . . . . 9  |-  ( { x }  e.  F  ->  |^| F  C_  { x } )
42, 3syl 16 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  |^| F  C_  { x } )
5 simpr 459 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  x  e.  |^| F )
65snssd 4161 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  C_  |^| F )
74, 6eqssd 3506 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  |^| F  =  { x } )
87ex 432 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  ->  |^| F  =  { x } ) )
98eximdv 1715 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( E. x  x  e.  |^| F  ->  E. x |^| F  =  { x } ) )
10 n0 3793 . . . . 5  |-  ( |^| F  =/=  (/)  <->  E. x  x  e. 
|^| F )
11 en1 7575 . . . . 5  |-  ( |^| F  ~~  1o  <->  E. x |^| F  =  { x } )
129, 10, 113imtr4g 270 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =/=  (/)  ->  |^| F  ~~  1o ) )
1312imp 427 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  |^| F  =/=  (/) )  ->  |^| F  ~~  1o )
14 endom 7535 . . 3  |-  ( |^| F  ~~  1o  ->  |^| F  ~<_  1o )
1513, 14syl 16 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  |^| F  =/=  (/) )  ->  |^| F  ~<_  1o )
16 1on 7129 . . 3  |-  1o  e.  On
17 0domg 7637 . . 3  |-  ( 1o  e.  On  ->  (/)  ~<_  1o )
1816, 17mp1i 12 . 2  |-  ( F  e.  ( UFil `  X
)  ->  (/)  ~<_  1o )
191, 15, 18pm2.61ne 2769 1  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  ~<_  1o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649    C_ wss 3461   (/)c0 3783   {csn 4016   |^|cint 4271   class class class wbr 4439   Oncon0 4867   ` cfv 5570   1oc1o 7115    ~~ cen 7506    ~<_ cdom 7507   UFilcufil 20569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1o 7122  df-en 7510  df-dom 7511  df-fbas 18614  df-fg 18615  df-fil 20516  df-ufil 20571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator