MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   Unicode version

Theorem uffixsn 20995
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)

Proof of Theorem uffixsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ufilfil 20974 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
2 filn0 20932 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3 intssuni 4271 . . . . . . . 8  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
41, 2, 33syl 18 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
5 filunibas 20951 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
61, 5syl 17 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
74, 6sseqtrd 3480 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
87sselda 3444 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  X )
98snssd 4130 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  C_  X
)
10 snex 4658 . . . . 5  |-  { A }  e.  _V
1110elpw 3969 . . . 4  |-  ( { A }  e.  ~P X 
<->  { A }  C_  X )
129, 11sylibr 217 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  ~P X )
13 snidg 4006 . . . 4  |-  ( A  e.  |^| F  ->  A  e.  { A } )
1413adantl 472 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  { A } )
15 eleq2 2529 . . . 4  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
1615elrab 3208 . . 3  |-  ( { A }  e.  {
x  e.  ~P X  |  A  e.  x } 
<->  ( { A }  e.  ~P X  /\  A  e.  { A } ) )
1712, 14, 16sylanbrc 675 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  {
x  e.  ~P X  |  A  e.  x } )
18 uffixfr 20993 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
1918biimpa 491 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
2017, 19eleqtrrd 2543 1  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   {crab 2753    C_ wss 3416   (/)c0 3743   ~Pcpw 3963   {csn 3980   U.cuni 4212   |^|cint 4248   ` cfv 5605   Filcfil 20915   UFilcufil 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-int 4249  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fv 5613  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-fbas 19022  df-fg 19023  df-fil 20916  df-ufil 20971
This theorem is referenced by:  ufildom1  20996  cfinufil  20998  fin1aufil  21002
  Copyright terms: Public domain W3C validator