MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixfr Structured version   Unicode version

Theorem uffixfr 20590
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element  A), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixfr  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
Distinct variable groups:    x, A    x, F    x, X

Proof of Theorem uffixfr
StepHypRef Expression
1 simpl 455 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  e.  ( UFil `  X ) )
2 ufilfil 20571 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
3 filtop 20522 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
42, 3syl 16 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  X  e.  F )
54adantr 463 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  X  e.  F )
6 filn0 20529 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
7 intssuni 4294 . . . . . . . . 9  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
82, 6, 73syl 20 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
9 filunibas 20548 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
102, 9syl 16 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
118, 10sseqtrd 3525 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
1211sselda 3489 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  X )
13 uffix 20588 . . . . . 6  |-  ( ( X  e.  F  /\  A  e.  X )  ->  ( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
145, 12, 13syl2anc 659 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  -> 
( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
1514simprd 461 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) )
1614simpld 457 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { { A } }  e.  ( fBas `  X
) )
17 fgcl 20545 . . . . 5  |-  ( { { A } }  e.  ( fBas `  X
)  ->  ( X filGen { { A } } )  e.  ( Fil `  X ) )
1816, 17syl 16 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  -> 
( X filGen { { A } } )  e.  ( Fil `  X
) )
1915, 18eqeltrd 2542 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X ) )
202adantr 463 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  e.  ( Fil `  X ) )
21 filsspw 20518 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
2220, 21syl 16 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  C_  ~P X )
23 elintg 4279 . . . . . 6  |-  ( A  e.  |^| F  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
2423ibi 241 . . . . 5  |-  ( A  e.  |^| F  ->  A. x  e.  F  A  e.  x )
2524adantl 464 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A. x  e.  F  A  e.  x )
26 ssrab 3564 . . . 4  |-  ( F 
C_  { x  e. 
~P X  |  A  e.  x }  <->  ( F  C_ 
~P X  /\  A. x  e.  F  A  e.  x ) )
2722, 25, 26sylanbrc 662 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  C_  { x  e. 
~P X  |  A  e.  x } )
28 ufilmax 20574 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  {
x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X )  /\  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
291, 19, 27, 28syl3anc 1226 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
30 eqimss 3541 . . . . 5  |-  ( F  =  { x  e. 
~P X  |  A  e.  x }  ->  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )
3130adantl 464 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )
3226simprbi 462 . . . 4  |-  ( F 
C_  { x  e. 
~P X  |  A  e.  x }  ->  A. x  e.  F  A  e.  x )
3331, 32syl 16 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  A. x  e.  F  A  e.  x )
34 eleq2 2527 . . . . . 6  |-  ( F  =  { x  e. 
~P X  |  A  e.  x }  ->  ( X  e.  F  <->  X  e.  { x  e.  ~P X  |  A  e.  x } ) )
3534biimpac 484 . . . . 5  |-  ( ( X  e.  F  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  X  e.  { x  e.  ~P X  |  A  e.  x } )
364, 35sylan 469 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  X  e.  { x  e.  ~P X  |  A  e.  x } )
37 eleq2 2527 . . . . . 6  |-  ( x  =  X  ->  ( A  e.  x  <->  A  e.  X ) )
3837elrab 3254 . . . . 5  |-  ( X  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( X  e.  ~P X  /\  A  e.  X ) )
3938simprbi 462 . . . 4  |-  ( X  e.  { x  e. 
~P X  |  A  e.  x }  ->  A  e.  X )
40 elintg 4279 . . . 4  |-  ( A  e.  X  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
4136, 39, 403syl 20 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
4233, 41mpbird 232 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  A  e.  |^| F )
4329, 42impbida 830 1  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   {crab 2808    C_ wss 3461   (/)c0 3783   ~Pcpw 3999   {csn 4016   U.cuni 4235   |^|cint 4271   ` cfv 5570  (class class class)co 6270   fBascfbas 18601   filGencfg 18602   Filcfil 20512   UFilcufil 20566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-fbas 18611  df-fg 18612  df-fil 20513  df-ufil 20568
This theorem is referenced by:  uffix2  20591  uffixsn  20592
  Copyright terms: Public domain W3C validator