MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnima Structured version   Unicode version

Theorem ucnima 21231
Description: An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
ucnprima.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
ucnprima.3  |-  ( ph  ->  F  e.  ( U Cnu V ) )
ucnprima.4  |-  ( ph  ->  W  e.  V )
ucnprima.5  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
Assertion
Ref Expression
ucnima  |-  ( ph  ->  E. r  e.  U  ( G " r ) 
C_  W )
Distinct variable groups:    x, y, F    x, X, y, r    F, r    x, G, y    U, r, x, y    V, r, x    W, r, x, y    X, r    Y, r, x    ph, r, x, y
Allowed substitution hints:    G( r)    V( y)    Y( y)

Proof of Theorem ucnima
Dummy variables  p  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnprima.4 . . . . 5  |-  ( ph  ->  W  e.  V )
2 ucnprima.3 . . . . . . 7  |-  ( ph  ->  F  e.  ( U Cnu V ) )
3 ucnprima.1 . . . . . . . 8  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
4 ucnprima.2 . . . . . . . 8  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
5 isucn 21228 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) w ( F `
 y ) ) ) ) )
63, 4, 5syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) w ( F `
 y ) ) ) ) )
72, 6mpbid 213 . . . . . 6  |-  ( ph  ->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) ) ) )
87simprd 464 . . . . 5  |-  ( ph  ->  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) ) )
9 breq 4361 . . . . . . . . 9  |-  ( w  =  W  ->  (
( F `  x
) w ( F `
 y )  <->  ( F `  x ) W ( F `  y ) ) )
109imbi2d 317 . . . . . . . 8  |-  ( w  =  W  ->  (
( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1110ralbidv 2798 . . . . . . 7  |-  ( w  =  W  ->  ( A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1211rexralbidv 2880 . . . . . 6  |-  ( w  =  W  ->  ( E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1312rspcv 3114 . . . . 5  |-  ( W  e.  V  ->  ( A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) ) )
141, 8, 13sylc 62 . . . 4  |-  ( ph  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )
15 simplll 766 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ph )
16 simplr 760 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) )
1715, 16jca 534 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ( ph  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
18 ustssxp 21154 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
193, 18sylan 473 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
2019sselda 3400 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  U )  /\  p  e.  r )  ->  p  e.  ( X  X.  X
) )
2120adantlr 719 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  p  e.  ( X  X.  X
) )
22 simpr 462 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  p  e.  r )
23 simplr 760 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) )
24 simpr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  p  e.  ( X  X.  X
) )
25 elxp2 4807 . . . . . . . . . . . . . 14  |-  ( p  e.  ( X  X.  X )  <->  E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.
)
2624, 25sylib 199 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.
)
27 simpr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  =  <. x ,  y >.
)  ->  p  =  <. x ,  y >.
)
2827eleq1d 2484 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  =  <. x ,  y >.
)  ->  ( p  e.  r  <->  <. x ,  y
>.  e.  r ) )
2928adantlr 719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( p  e.  r  <->  <. x ,  y >.  e.  r
) )
30 df-br 4360 . . . . . . . . . . . . . . . . . 18  |-  ( x r y  <->  <. x ,  y >.  e.  r
)
3129, 30syl6bbr 266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( p  e.  r  <->  x r
y ) )
32 simplr 760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  e.  ( X  X.  X
) )
33 opex 4621 . . . . . . . . . . . . . . . . . . . . 21  |-  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>.  e.  _V
34 ucnprima.5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
353, 4, 2, 1, 34ucnimalem 21230 . . . . . . . . . . . . . . . . . . . . . 22  |-  G  =  ( p  e.  ( X  X.  X ) 
|->  <. ( F `  ( 1st `  p ) ) ,  ( F `
 ( 2nd `  p
) ) >. )
3635fvmpt2 5910 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  ( X  X.  X )  /\  <.
( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) ) >.  e.  _V )  ->  ( G `  p )  =  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>. )
3732, 33, 36sylancl 666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( G `
 p )  = 
<. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) ) >. )
38 simpr 462 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  = 
<. x ,  y >.
)
39 1st2nd2 6781 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( p  e.  ( X  X.  X )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4032, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  = 
<. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4138, 40eqtr3d 2458 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  <. x ,  y >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
42 vex 3019 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  x  e. 
_V
43 vex 3019 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  y  e. 
_V
4442, 43opth 4631 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
x ,  y >.  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  <->  ( x  =  ( 1st `  p
)  /\  y  =  ( 2nd `  p ) ) )
4541, 44sylib 199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( x  =  ( 1st `  p
)  /\  y  =  ( 2nd `  p ) ) )
4645simpld 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  x  =  ( 1st `  p
) )
4746fveq2d 5822 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( F `
 x )  =  ( F `  ( 1st `  p ) ) )
4845simprd 464 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  y  =  ( 2nd `  p
) )
4948fveq2d 5822 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( F `
 y )  =  ( F `  ( 2nd `  p ) ) )
5047, 49opeq12d 4131 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  <. ( F `  x ) ,  ( F `  y ) >.  =  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>. )
5137, 50eqtr4d 2459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( G `
 p )  = 
<. ( F `  x
) ,  ( F `
 y ) >.
)
5251eleq1d 2484 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( G `  p )  e.  W  <->  <. ( F `
 x ) ,  ( F `  y
) >.  e.  W ) )
53 df-br 4360 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x ) W ( F `  y )  <->  <. ( F `
 x ) ,  ( F `  y
) >.  e.  W )
5452, 53syl6bbr 266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( G `  p )  e.  W  <->  ( F `  x ) W ( F `  y ) ) )
5531, 54imbi12d 321 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( p  e.  r  -> 
( G `  p
)  e.  W )  <-> 
( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
5655exbiri 626 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  (
p  =  <. x ,  y >.  ->  (
( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  ( p  e.  r  ->  ( G `
 p )  e.  W ) ) ) )
5756reximdv 2832 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  ( E. y  e.  X  p  =  <. x ,  y >.  ->  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
5857reximdv 2832 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  ( E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
5926, 58mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )
6059adantlr 719 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )
6123, 60r19.29d2r 2904 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  /\  ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
62 pm3.35 589 . . . . . . . . . . . 12  |-  ( ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6362rexlimivw 2847 . . . . . . . . . . 11  |-  ( E. y  e.  X  ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6463rexlimivw 2847 . . . . . . . . . 10  |-  ( E. x  e.  X  E. y  e.  X  (
( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6561, 64syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  (
p  e.  r  -> 
( G `  p
)  e.  W ) )
6665imp 430 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  /\  p  e.  r )  ->  ( G `  p )  e.  W )
6717, 21, 22, 66syl21anc 1263 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ( G `  p )  e.  W )
6867ralrimiva 2773 . . . . . 6  |-  ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  ->  A. p  e.  r  ( G `  p )  e.  W
)
6968ex 435 . . . . 5  |-  ( (
ph  /\  r  e.  U )  ->  ( A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  A. p  e.  r  ( G `  p )  e.  W
) )
7069reximdva 2833 . . . 4  |-  ( ph  ->  ( E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  E. r  e.  U  A. p  e.  r  ( G `  p )  e.  W
) )
7114, 70mpd 15 . . 3  |-  ( ph  ->  E. r  e.  U  A. p  e.  r 
( G `  p
)  e.  W )
7234mpt2fun 6349 . . . . . 6  |-  Fun  G
73 opex 4621 . . . . . . . 8  |-  <. ( F `  x ) ,  ( F `  y ) >.  e.  _V
7434, 73dmmpt2 6814 . . . . . . 7  |-  dom  G  =  ( X  X.  X )
7519, 74syl6sseqr 3447 . . . . . 6  |-  ( (
ph  /\  r  e.  U )  ->  r  C_ 
dom  G )
76 funimass4 5869 . . . . . 6  |-  ( ( Fun  G  /\  r  C_ 
dom  G )  -> 
( ( G "
r )  C_  W  <->  A. p  e.  r  ( G `  p )  e.  W ) )
7772, 75, 76sylancr 667 . . . . 5  |-  ( (
ph  /\  r  e.  U )  ->  (
( G " r
)  C_  W  <->  A. p  e.  r  ( G `  p )  e.  W
) )
7877biimprd 226 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  ( A. p  e.  r 
( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)
7978ralrimiva 2773 . . 3  |-  ( ph  ->  A. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)
80 r19.29r 2897 . . 3  |-  ( ( E. r  e.  U  A. p  e.  r 
( G `  p
)  e.  W  /\  A. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  E. r  e.  U  ( A. p  e.  r  ( G `  p )  e.  W  /\  ( A. p  e.  r 
( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
) )
8171, 79, 80syl2anc 665 . 2  |-  ( ph  ->  E. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
) )
82 pm3.35 589 . . 3  |-  ( ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  ( G " r )  C_  W
)
8382reximi 2826 . 2  |-  ( E. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  E. r  e.  U  ( G " r )  C_  W
)
8481, 83syl 17 1  |-  ( ph  ->  E. r  e.  U  ( G " r ) 
C_  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2708   E.wrex 2709   _Vcvv 3016    C_ wss 3372   <.cop 3940   class class class wbr 4359    X. cxp 4787   dom cdm 4789   "cima 4792   Fun wfun 5531   -->wf 5533   ` cfv 5537  (class class class)co 6242    |-> cmpt2 6244   1stc1st 6742   2ndc2nd 6743  UnifOncust 21149   Cnucucn 21225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-ral 2713  df-rex 2714  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-id 4704  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-fv 5545  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-1st 6744  df-2nd 6745  df-map 7422  df-ust 21150  df-ucn 21226
This theorem is referenced by:  ucnprima  21232
  Copyright terms: Public domain W3C validator