MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubth Unicode version

Theorem ubth 22328
Description: Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let  T be a collection of bounded linear operators on a Banach space. If, for every vector 
x, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1  |-  X  =  ( BaseSet `  U )
ubth.2  |-  N  =  ( normCV `  W )
ubth.3  |-  M  =  ( U normOp OLD W
)
Assertion
Ref Expression
ubth  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  T  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d ) )
Distinct variable groups:    x, c,
t, d, N    T, c, d, t, x    U, c, d, t, x    W, c, d, t, x    X, c, d, t, x
Allowed substitution hints:    M( x, t, c, d)

Proof of Theorem ubth
StepHypRef Expression
1 oveq1 6047 . . . . 5  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( U  BLnOp  W )  =  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  W ) )
21sseq2d 3336 . . . 4  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( T  C_  ( U  BLnOp  W )  <->  T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
BLnOp  W ) ) )
3 ubth.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 fveq2 5687 . . . . . . 7  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( BaseSet `  U )  =  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
53, 4syl5eq 2448 . . . . . 6  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  X  =  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
65raleqdv 2870 . . . . 5  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c
) )
7 ubth.3 . . . . . . . . 9  |-  M  =  ( U normOp OLD W
)
8 oveq1 6047 . . . . . . . . 9  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( U normOp OLD W
)  =  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD W ) )
97, 8syl5eq 2448 . . . . . . . 8  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  M  =  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD W ) )
109fveq1d 5689 . . . . . . 7  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( M `  t
)  =  ( ( if ( U  e. 
CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t ) )
1110breq1d 4182 . . . . . 6  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( M `  t )  <_  d  <->  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
) )
1211rexralbidv 2710 . . . . 5  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
) )
136, 12bibi12d 313 . . . 4  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d )  <->  ( A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
) ) )
142, 13imbi12d 312 . . 3  |-  ( U  =  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( T  C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d ) )  <->  ( T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  W )  ->  ( A. x  e.  ( BaseSet
`  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
) ) ) )
15 oveq2 6048 . . . . 5  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  W )  =  ( if ( U  e. 
CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) )
1615sseq2d 3336 . . . 4  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
BLnOp  W )  <->  T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) 
BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) ) )
17 ubth.2 . . . . . . . . . 10  |-  N  =  ( normCV `  W )
18 fveq2 5687 . . . . . . . . . 10  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( normCV `  W )  =  ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
1917, 18syl5eq 2448 . . . . . . . . 9  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  N  =  ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) )
2019fveq1d 5689 . . . . . . . 8  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( N `  (
t `  x )
)  =  ( (
normCV
`  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  ( t `  x ) ) )
2120breq1d 4182 . . . . . . 7  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( N `  ( t `  x
) )  <_  c  <->  ( ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  ( t `  x ) )  <_ 
c ) )
2221rexralbidv 2710 . . . . . 6  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. c  e.  RR  A. t  e.  T  (
( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  ( t `  x ) )  <_ 
c ) )
2322ralbidv 2686 . . . . 5  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) E. c  e.  RR  A. t  e.  T  ( ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) `  (
t `  x )
)  <_  c )
)
24 oveq2 6048 . . . . . . . 8  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W )  =  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
2524fveq1d 5689 . . . . . . 7  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  =  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )
)
2625breq1d 4182 . . . . . 6  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD W ) `  t )  <_  d  <->  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )  <_  d ) )
2726rexralbidv 2710 . . . . 5  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( E. d  e.  RR  A. t  e.  T  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD W ) `  t )  <_  d  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )  <_  d ) )
2823, 27bibi12d 313 . . . 4  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
)  <->  ( A. x  e.  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) `  (
t `  x )
)  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )  <_  d ) ) )
2916, 28imbi12d 312 . . 3  |-  ( W  =  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( T  C_  ( if ( U  e. 
CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  W )  ->  ( A. x  e.  ( BaseSet
`  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  (
( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) normOp OLD W ) `  t )  <_  d
) )  <->  ( T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) )  ->  ( A. x  e.  ( BaseSet
`  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) `  (
t `  x )
)  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )  <_  d ) ) ) )
30 eqid 2404 . . . 4  |-  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  =  ( BaseSet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )
31 eqid 2404 . . . 4  |-  ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) )  =  (
normCV
`  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
)
32 eqid 2404 . . . 4  |-  ( IndMet `  if ( U  e. 
CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  =  ( IndMet `  if ( U  e. 
CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
33 eqid 2404 . . . 4  |-  ( MetOpen `  ( IndMet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )  =  (
MetOpen `  ( IndMet `  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
34 eqid 2404 . . . . . 6  |-  <. <.  +  ,  x.  >. ,  abs >.  = 
<. <.  +  ,  x.  >. ,  abs >.
3534cnbn 22324 . . . . 5  |-  <. <.  +  ,  x.  >. ,  abs >.  e. 
CBan
3635elimel 3751 . . . 4  |-  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  e.  CBan
37 elimnvu 22129 . . . 4  |-  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )  e.  NrmCVec
38 id 20 . . . 4  |-  ( T 
C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) )  ->  T  C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) )
3930, 31, 32, 33, 36, 37, 38ubthlem3 22327 . . 3  |-  ( T 
C_  ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  BLnOp  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) )  ->  ( A. x  e.  ( BaseSet
`  if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) E. c  e.  RR  A. t  e.  T  ( ( normCV `  if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >.
) ) `  (
t `  x )
)  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( ( if ( U  e.  CBan ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
normOp OLD if ( W  e.  NrmCVec ,  W ,  <. <.  +  ,  x.  >. ,  abs >. )
) `  t )  <_  d ) )
4014, 29, 39dedth2h 3741 . 2  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec )  ->  ( T  C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d ) ) )
41403impia 1150 1  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  T  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  <->  E. d  e.  RR  A. t  e.  T  ( M `  t )  <_  d ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   ifcif 3699   <.cop 3777   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945    + caddc 8949    x. cmul 8951    <_ cle 9077   abscabs 11994   MetOpencmopn 16646   NrmCVeccnv 22016   BaseSetcba 22018   normCVcnmcv 22022   IndMetcims 22023   normOp OLDcnmoo 22195    BLnOp cblo 22196   CBanccbn 22317
This theorem is referenced by:  htthlem  22373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-dc 8282  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-cn 17245  df-cnp 17246  df-lm 17247  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-fcls 17926  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-cfil 19161  df-cau 19162  df-cmet 19163  df-grpo 21732  df-gid 21733  df-ginv 21734  df-gdiv 21735  df-ablo 21823  df-vc 21978  df-nv 22024  df-va 22027  df-ba 22028  df-sm 22029  df-0v 22030  df-vs 22031  df-nmcv 22032  df-ims 22033  df-lno 22198  df-nmoo 22199  df-blo 22200  df-0o 22201  df-cbn 22318
  Copyright terms: Public domain W3C validator