MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1c Structured version   Unicode version

Theorem tz9.1c 8193
Description: Alternative expression for the existence of transitive closures tz9.1 8192: the intersection of all transitive sets containing  A is a set. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypothesis
Ref Expression
tz9.1.1  |-  A  e. 
_V
Assertion
Ref Expression
tz9.1c  |-  |^| { x  |  ( A  C_  x  /\  Tr  x ) }  e.  _V
Distinct variable group:    x, A

Proof of Theorem tz9.1c
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.1.1 . . . . 5  |-  A  e. 
_V
2 eqid 2402 . . . . 5  |-  ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om )  =  ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om )
3 eqid 2402 . . . . 5  |-  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  =  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )
41, 2, 3trcl 8191 . . . 4  |-  ( A 
C_  U_ w  e.  om  ( ( rec (
( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  w )  /\  Tr  U_ w  e.  om  (
( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  w )  /\  A. x ( ( A 
C_  x  /\  Tr  x )  ->  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w ) 
C_  x ) )
5 3simpa 994 . . . 4  |-  ( ( A  C_  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  /\  Tr  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  /\  A. x ( ( A  C_  x  /\  Tr  x )  ->  U_ w  e.  om  ( ( rec (
( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  w )  C_  x
) )  ->  ( A  C_  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  /\  Tr  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w ) ) )
6 omex 8093 . . . . . 6  |-  om  e.  _V
7 fvex 5859 . . . . . 6  |-  ( ( rec ( ( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  w
)  e.  _V
86, 7iunex 6764 . . . . 5  |-  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  e.  _V
9 sseq2 3464 . . . . . 6  |-  ( x  =  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  ->  ( A  C_  x 
<->  A  C_  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w ) ) )
10 treq 4495 . . . . . 6  |-  ( x  =  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  ->  ( Tr  x  <->  Tr 
U_ w  e.  om  ( ( rec (
( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  w ) ) )
119, 10anbi12d 709 . . . . 5  |-  ( x  =  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  ->  ( ( A 
C_  x  /\  Tr  x )  <->  ( A  C_ 
U_ w  e.  om  ( ( rec (
( z  e.  _V  |->  ( z  u.  U. z ) ) ,  A )  |`  om ) `  w )  /\  Tr  U_ w  e.  om  (
( rec ( ( z  e.  _V  |->  ( z  u.  U. z
) ) ,  A
)  |`  om ) `  w ) ) ) )
128, 11spcev 3151 . . . 4  |-  ( ( A  C_  U_ w  e. 
om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w )  /\  Tr  U_ w  e.  om  ( ( rec ( ( z  e. 
_V  |->  ( z  u. 
U. z ) ) ,  A )  |`  om ) `  w ) )  ->  E. x
( A  C_  x  /\  Tr  x ) )
134, 5, 12mp2b 10 . . 3  |-  E. x
( A  C_  x  /\  Tr  x )
14 abn0 3758 . . 3  |-  ( { x  |  ( A 
C_  x  /\  Tr  x ) }  =/=  (/)  <->  E. x ( A  C_  x  /\  Tr  x ) )
1513, 14mpbir 209 . 2  |-  { x  |  ( A  C_  x  /\  Tr  x ) }  =/=  (/)
16 intex 4550 . 2  |-  ( { x  |  ( A 
C_  x  /\  Tr  x ) }  =/=  (/)  <->  |^|
{ x  |  ( A  C_  x  /\  Tr  x ) }  e.  _V )
1715, 16mpbi 208 1  |-  |^| { x  |  ( A  C_  x  /\  Tr  x ) }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974   A.wal 1403    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387    =/= wne 2598   _Vcvv 3059    u. cun 3412    C_ wss 3414   (/)c0 3738   U.cuni 4191   |^|cint 4227   U_ciun 4271    |-> cmpt 4453   Tr wtr 4489    |` cres 4825   ` cfv 5569   omcom 6683   reccrdg 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113
This theorem is referenced by:  tcvalg  8201
  Copyright terms: Public domain W3C validator