MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13 Structured version   Unicode version

Theorem tz9.13 8112
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
Hypothesis
Ref Expression
tz9.13.1  |-  A  e. 
_V
Assertion
Ref Expression
tz9.13  |-  E. x  e.  On  A  e.  ( R1 `  x )
Distinct variable group:    x, A

Proof of Theorem tz9.13
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.13.1 . . 3  |-  A  e. 
_V
2 setind 8068 . . . 4  |-  ( A. z ( z  C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  z  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) } )  ->  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  =  _V )
3 ssel 3461 . . . . . . . 8  |-  ( z 
C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  ( w  e.  z  ->  w  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) } ) )
4 vex 3081 . . . . . . . . 9  |-  w  e. 
_V
5 eleq1 2526 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  e.  ( R1
`  x )  <->  w  e.  ( R1 `  x ) ) )
65rexbidv 2868 . . . . . . . . 9  |-  ( y  =  w  ->  ( E. x  e.  On  y  e.  ( R1 `  x )  <->  E. x  e.  On  w  e.  ( R1 `  x ) ) )
74, 6elab 3213 . . . . . . . 8  |-  ( w  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  <->  E. x  e.  On  w  e.  ( R1 `  x ) )
83, 7syl6ib 226 . . . . . . 7  |-  ( z 
C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  ( w  e.  z  ->  E. x  e.  On  w  e.  ( R1 `  x ) ) )
98ralrimiv 2828 . . . . . 6  |-  ( z 
C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  A. w  e.  z  E. x  e.  On  w  e.  ( R1 `  x
) )
10 vex 3081 . . . . . . 7  |-  z  e. 
_V
1110tz9.12 8111 . . . . . 6  |-  ( A. w  e.  z  E. x  e.  On  w  e.  ( R1 `  x
)  ->  E. x  e.  On  z  e.  ( R1 `  x ) )
129, 11syl 16 . . . . 5  |-  ( z 
C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  E. x  e.  On  z  e.  ( R1 `  x
) )
13 eleq1 2526 . . . . . . 7  |-  ( y  =  z  ->  (
y  e.  ( R1
`  x )  <->  z  e.  ( R1 `  x ) ) )
1413rexbidv 2868 . . . . . 6  |-  ( y  =  z  ->  ( E. x  e.  On  y  e.  ( R1 `  x )  <->  E. x  e.  On  z  e.  ( R1 `  x ) ) )
1510, 14elab 3213 . . . . 5  |-  ( z  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  <->  E. x  e.  On  z  e.  ( R1 `  x ) )
1612, 15sylibr 212 . . . 4  |-  ( z 
C_  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  ->  z  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) } )
172, 16mpg 1594 . . 3  |-  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  =  _V
181, 17eleqtrri 2541 . 2  |-  A  e. 
{ y  |  E. x  e.  On  y  e.  ( R1 `  x
) }
19 eleq1 2526 . . . 4  |-  ( y  =  A  ->  (
y  e.  ( R1
`  x )  <->  A  e.  ( R1 `  x ) ) )
2019rexbidv 2868 . . 3  |-  ( y  =  A  ->  ( E. x  e.  On  y  e.  ( R1 `  x )  <->  E. x  e.  On  A  e.  ( R1 `  x ) ) )
211, 20elab 3213 . 2  |-  ( A  e.  { y  |  E. x  e.  On  y  e.  ( R1 `  x ) }  <->  E. x  e.  On  A  e.  ( R1 `  x ) )
2218, 21mpbi 208 1  |-  E. x  e.  On  A  e.  ( R1 `  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   {cab 2439   A.wral 2799   E.wrex 2800   _Vcvv 3078    C_ wss 3439   Oncon0 4830   ` cfv 5529   R1cr1 8083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-reg 7921  ax-inf2 7961
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-om 6590  df-recs 6945  df-rdg 6979  df-r1 8085
This theorem is referenced by:  tz9.13g  8113  elhf2  28377
  Copyright terms: Public domain W3C validator