MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49 Structured version   Unicode version

Theorem tz7.49 7128
Description: Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
Hypotheses
Ref Expression
tz7.49.1  |-  F  Fn  On
tz7.49.2  |-  ( ph  <->  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
Assertion
Ref Expression
tz7.49  |-  ( ( A  e.  B  /\  ph )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
Distinct variable groups:    x, y, A    x, F, y    ph, y
Allowed substitution hints:    ph( x)    B( x, y)

Proof of Theorem tz7.49
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ne 2654 . . . . . . . . 9  |-  ( ( A  \  ( F
" x ) )  =/=  (/)  <->  -.  ( A  \  ( F " x
) )  =  (/) )
21ralbii 2888 . . . . . . . 8  |-  ( A. x  e.  On  ( A  \  ( F "
x ) )  =/=  (/) 
<-> 
A. x  e.  On  -.  ( A  \  ( F " x ) )  =  (/) )
3 tz7.49.2 . . . . . . . . 9  |-  ( ph  <->  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
4 ralim 2846 . . . . . . . . 9  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  ->  ( A. x  e.  On  ( A  \  ( F "
x ) )  =/=  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) )
53, 4sylbi 195 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  On  ( A  \ 
( F " x
) )  =/=  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
62, 5syl5bir 218 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) )
7 tz7.49.1 . . . . . . . . 9  |-  F  Fn  On
87tz7.48-3 7127 . . . . . . . 8  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  -.  A  e.  _V )
9 elex 3118 . . . . . . . 8  |-  ( A  e.  B  ->  A  e.  _V )
108, 9nsyl3 119 . . . . . . 7  |-  ( A  e.  B  ->  -.  A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) ) )
116, 10nsyli 141 . . . . . 6  |-  ( ph  ->  ( A  e.  B  ->  -.  A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/) ) )
12 dfrex2 2908 . . . . . 6  |-  ( E. x  e.  On  ( A  \  ( F "
x ) )  =  (/) 
<->  -.  A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/) )
1311, 12syl6ibr 227 . . . . 5  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( A  \  ( F " x ) )  =  (/) ) )
14 imaeq2 5343 . . . . . . . 8  |-  ( x  =  y  ->  ( F " x )  =  ( F " y
) )
1514difeq2d 3618 . . . . . . 7  |-  ( x  =  y  ->  ( A  \  ( F "
x ) )  =  ( A  \  ( F " y ) ) )
1615eqeq1d 2459 . . . . . 6  |-  ( x  =  y  ->  (
( A  \  ( F " x ) )  =  (/)  <->  ( A  \ 
( F " y
) )  =  (/) ) )
1716onminex 6641 . . . . 5  |-  ( E. x  e.  On  ( A  \  ( F "
x ) )  =  (/)  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) ) )
1813, 17syl6 33 . . . 4  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) ) ) )
19 df-ne 2654 . . . . . . 7  |-  ( ( A  \  ( F
" y ) )  =/=  (/)  <->  -.  ( A  \  ( F " y
) )  =  (/) )
2019ralbii 2888 . . . . . 6  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) 
<-> 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) )
2120anbi2i 694 . . . . 5  |-  ( ( ( A  \  ( F " x ) )  =  (/)  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  <->  ( ( A  \  ( F "
x ) )  =  (/)  /\  A. y  e.  x  -.  ( A 
\  ( F "
y ) )  =  (/) ) )
2221rexbii 2959 . . . 4  |-  ( E. x  e.  On  (
( A  \  ( F " x ) )  =  (/)  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  <->  E. x  e.  On  ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  -.  ( A 
\  ( F "
y ) )  =  (/) ) )
2318, 22syl6ibr 227 . . 3  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/) ) ) )
24 nfra1 2838 . . . . 5  |-  F/ x A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )
253, 24nfxfr 1646 . . . 4  |-  F/ x ph
26 simpllr 760 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )
27 fnfun 5684 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  On  ->  Fun  F )
287, 27ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  F
29 fvelima 5925 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  e.  ( F " x
) )  ->  E. y  e.  x  ( F `  y )  =  z )
3028, 29mpan 670 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( F "
x )  ->  E. y  e.  x  ( F `  y )  =  z )
31 nfv 1708 . . . . . . . . . . . . . . . . 17  |-  F/ y
ph
32 nfra1 2838 . . . . . . . . . . . . . . . . 17  |-  F/ y A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)
3331, 32nfan 1929 . . . . . . . . . . . . . . . 16  |-  F/ y ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )
34 nfv 1708 . . . . . . . . . . . . . . . 16  |-  F/ y ( x  e.  On  ->  z  e.  A )
35 rsp 2823 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( y  e.  x  ->  ( A  \  ( F " y
) )  =/=  (/) ) )
3635adantld 467 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( ( x  e.  On  /\  y  e.  x )  ->  ( A  \  ( F "
y ) )  =/=  (/) ) )
37 onelon 4912 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
3815neeq1d 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  y  ->  (
( A  \  ( F " x ) )  =/=  (/)  <->  ( A  \ 
( F " y
) )  =/=  (/) ) )
39 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4039, 15eleq12d 2539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  y  ->  (
( F `  x
)  e.  ( A 
\  ( F "
x ) )  <->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) )
4138, 40imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  y  ->  (
( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  <->  ( ( A 
\  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4241rspcv 3206 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  On  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  ( ( A  \  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
433, 42syl5bi 217 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  ( ph  ->  ( ( A 
\  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4443com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  On  ->  (
( A  \  ( F " y ) )  =/=  (/)  ->  ( ph  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) )
4537, 44syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( A  \ 
( F " y
) )  =/=  (/)  ->  ( ph  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4636, 45sylcom 29 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( ( x  e.  On  /\  y  e.  x )  ->  ( ph  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4746com3r 79 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
( x  e.  On  /\  y  e.  x )  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4847imp 429 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( ( x  e.  On  /\  y  e.  x )  ->  ( F `  y )  e.  ( A  \  ( F " y ) ) ) )
4948expcomd 438 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( x  e.  On  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) )
50 eldifi 3622 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  ( F `  y )  e.  A )
51 eleq1 2529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  =  z  ->  (
( F `  y
)  e.  A  <->  z  e.  A ) )
5250, 51syl5ibcom 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  (
( F `  y
)  =  z  -> 
z  e.  A ) )
5349, 52syl8 70 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( x  e.  On  ->  ( ( F `  y )  =  z  ->  z  e.  A
) ) ) )
5453com34 83 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( ( F `  y )  =  z  ->  ( x  e.  On  ->  z  e.  A ) ) ) )
5533, 34, 54rexlimd 2941 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( E. y  e.  x  ( F `  y )  =  z  ->  ( x  e.  On  ->  z  e.  A ) ) )
5630, 55syl5 32 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( z  e.  ( F " x )  ->  ( x  e.  On  ->  z  e.  A ) ) )
5756com23 78 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( x  e.  On  ->  ( z  e.  ( F " x )  ->  z  e.  A
) ) )
5857imp 429 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  (
z  e.  ( F
" x )  -> 
z  e.  A ) )
5958ssrdv 3505 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  ( F " x )  C_  A )
60 ssdif0 3888 . . . . . . . . . . . 12  |-  ( A 
C_  ( F "
x )  <->  ( A  \  ( F " x
) )  =  (/) )
6160biimpri 206 . . . . . . . . . . 11  |-  ( ( A  \  ( F
" x ) )  =  (/)  ->  A  C_  ( F " x ) )
6259, 61anim12i 566 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( ( F " x ) 
C_  A  /\  A  C_  ( F " x
) ) )
63 eqss 3514 . . . . . . . . . 10  |-  ( ( F " x )  =  A  <->  ( ( F " x )  C_  A  /\  A  C_  ( F " x ) ) )
6462, 63sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( F
" x )  =  A )
65 onss 6625 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  x  C_  On )
6632, 31nfan 1929 . . . . . . . . . . . . . . . . 17  |-  F/ y ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )
67 nfv 1708 . . . . . . . . . . . . . . . . 17  |-  F/ y  x  C_  On
6866, 67nfan 1929 . . . . . . . . . . . . . . . 16  |-  F/ y ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )
69 nfv 1708 . . . . . . . . . . . . . . . . . 18  |-  F/ z ( ( ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x )
70 ssel 3493 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  On  ->  ( y  e.  x  ->  y  e.  On ) )
71 onss 6625 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  y  C_  On )
72 fndm 5686 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F  Fn  On  ->  dom  F  =  On )
737, 72ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  dom  F  =  On
7471, 73syl6sseqr 3546 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  On  ->  y  C_ 
dom  F )
75 funfvima2 6149 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Fun  F  /\  y  C_ 
dom  F )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F " y ) ) )
7628, 74, 75sylancr 663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  On  ->  (
z  e.  y  -> 
( F `  z
)  e.  ( F
" y ) ) )
7770, 76syl6 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
z  e.  y  -> 
( F `  z
)  e.  ( F
" y ) ) ) )
7835com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( A  \  ( F " y
) )  =/=  (/) ) )
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x 
C_  On  ->  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( A  \  ( F " y
) )  =/=  (/) ) ) )
8070, 79, 44syl10 73 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x 
C_  On  ->  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( ph  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) ) )
8180imp4a 589 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
82 eldifn 3623 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  -.  ( F `  y )  e.  ( F "
y ) )
83 eleq1a 2540 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F `  z )  e.  ( F "
y )  ->  (
( F `  y
)  =  ( F `
 z )  -> 
( F `  y
)  e.  ( F
" y ) ) )
8483con3d 133 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  z )  e.  ( F "
y )  ->  ( -.  ( F `  y
)  e.  ( F
" y )  ->  -.  ( F `  y
)  =  ( F `
 z ) ) )
8582, 84syl5com 30 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  (
( F `  z
)  e.  ( F
" y )  ->  -.  ( F `  y
)  =  ( F `
 z ) ) )
8681, 85syl8 70 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  ->  ( ( F `
 z )  e.  ( F " y
)  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8786com34 83 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( F `  z
)  e.  ( F
" y )  -> 
( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8877, 87syldd 66 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
z  e.  y  -> 
( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8988com4r 86 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  ( y  e.  x  ->  ( z  e.  y  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
9089imp31 432 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x
)  ->  ( z  e.  y  ->  -.  ( F `  y )  =  ( F `  z ) ) )
9169, 90ralrimi 2857 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x
)  ->  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) )
9291ex 434 . . . . . . . . . . . . . . . 16  |-  ( ( ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  ->  ( y  e.  x  ->  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) ) )
9368, 92ralrimi 2857 . . . . . . . . . . . . . . 15  |-  ( ( ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  ->  A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) )
9493ex 434 . . . . . . . . . . . . . 14  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) ) )
9594ancld 553 . . . . . . . . . . . . 13  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  ( x  C_  On  /\ 
A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) ) ) )
967tz7.48lem 7124 . . . . . . . . . . . . 13  |-  ( ( x  C_  On  /\  A. y  e.  x  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) )  ->  Fun  `' ( F  |`  x ) )
9765, 95, 96syl56 34 . . . . . . . . . . . 12  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  e.  On  ->  Fun  `' ( F  |`  x ) ) )
9897ancoms 453 . . . . . . . . . . 11  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( x  e.  On  ->  Fun  `' ( F  |`  x ) ) )
9998imp 429 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  Fun  `' ( F  |`  x
) )
10099adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  Fun  `' ( F  |`  x ) )
10126, 64, 1003jca 1176 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) )
102101exp41 610 . . . . . . 7  |-  ( ph  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
x  e.  On  ->  ( ( A  \  ( F " x ) )  =  (/)  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) ) ) ) )
103102com23 78 . . . . . 6  |-  ( ph  ->  ( x  e.  On  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
( A  \  ( F " x ) )  =  (/)  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) ) ) ) )
104103com34 83 . . . . 5  |-  ( ph  ->  ( x  e.  On  ->  ( ( A  \ 
( F " x
) )  =  (/)  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) ) ) )
105104imp4a 589 . . . 4  |-  ( ph  ->  ( x  e.  On  ->  ( ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/) )  -> 
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) ) )
10625, 105reximdai 2926 . . 3  |-  ( ph  ->  ( E. x  e.  On  ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) )
10723, 106syld 44 . 2  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) )
108107impcom 430 1  |-  ( ( A  e.  B  /\  ph )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   _Vcvv 3109    \ cdif 3468    C_ wss 3471   (/)c0 3793   Oncon0 4887   `'ccnv 5007   dom cdm 5008    |` cres 5010   "cima 5011   Fun wfun 5588    Fn wfn 5589   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602
This theorem is referenced by:  tz7.49c  7129
  Copyright terms: Public domain W3C validator