MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49 Unicode version

Theorem tz7.49 6661
Description: Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
Hypotheses
Ref Expression
tz7.49.1  |-  F  Fn  On
tz7.49.2  |-  ( ph  <->  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
Assertion
Ref Expression
tz7.49  |-  ( ( A  e.  B  /\  ph )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
Distinct variable groups:    x, y, A    x, F, y    ph, y
Allowed substitution hints:    ph( x)    B( x, y)

Proof of Theorem tz7.49
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ne 2569 . . . . . . . . 9  |-  ( ( A  \  ( F
" x ) )  =/=  (/)  <->  -.  ( A  \  ( F " x
) )  =  (/) )
21ralbii 2690 . . . . . . . 8  |-  ( A. x  e.  On  ( A  \  ( F "
x ) )  =/=  (/) 
<-> 
A. x  e.  On  -.  ( A  \  ( F " x ) )  =  (/) )
3 tz7.49.2 . . . . . . . . 9  |-  ( ph  <->  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
4 ralim 2737 . . . . . . . . 9  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  ->  ( A. x  e.  On  ( A  \  ( F "
x ) )  =/=  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) )
53, 4sylbi 188 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  On  ( A  \ 
( F " x
) )  =/=  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
62, 5syl5bir 210 . . . . . . 7  |-  ( ph  ->  ( A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/)  ->  A. x  e.  On  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) )
7 tz7.49.1 . . . . . . . . 9  |-  F  Fn  On
87tz7.48-3 6660 . . . . . . . 8  |-  ( A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) )  ->  -.  A  e.  _V )
9 elex 2924 . . . . . . . 8  |-  ( A  e.  B  ->  A  e.  _V )
108, 9nsyl3 113 . . . . . . 7  |-  ( A  e.  B  ->  -.  A. x  e.  On  ( F `  x )  e.  ( A  \  ( F " x ) ) )
116, 10nsyli 135 . . . . . 6  |-  ( ph  ->  ( A  e.  B  ->  -.  A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/) ) )
12 dfrex2 2679 . . . . . 6  |-  ( E. x  e.  On  ( A  \  ( F "
x ) )  =  (/) 
<->  -.  A. x  e.  On  -.  ( A 
\  ( F "
x ) )  =  (/) )
1311, 12syl6ibr 219 . . . . 5  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( A  \  ( F " x ) )  =  (/) ) )
14 imaeq2 5158 . . . . . . . 8  |-  ( x  =  y  ->  ( F " x )  =  ( F " y
) )
1514difeq2d 3425 . . . . . . 7  |-  ( x  =  y  ->  ( A  \  ( F "
x ) )  =  ( A  \  ( F " y ) ) )
1615eqeq1d 2412 . . . . . 6  |-  ( x  =  y  ->  (
( A  \  ( F " x ) )  =  (/)  <->  ( A  \ 
( F " y
) )  =  (/) ) )
1716onminex 4746 . . . . 5  |-  ( E. x  e.  On  ( A  \  ( F "
x ) )  =  (/)  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) ) )
1813, 17syl6 31 . . . 4  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) ) ) )
19 df-ne 2569 . . . . . . 7  |-  ( ( A  \  ( F
" y ) )  =/=  (/)  <->  -.  ( A  \  ( F " y
) )  =  (/) )
2019ralbii 2690 . . . . . 6  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) 
<-> 
A. y  e.  x  -.  ( A  \  ( F " y ) )  =  (/) )
2120anbi2i 676 . . . . 5  |-  ( ( ( A  \  ( F " x ) )  =  (/)  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  <->  ( ( A  \  ( F "
x ) )  =  (/)  /\  A. y  e.  x  -.  ( A 
\  ( F "
y ) )  =  (/) ) )
2221rexbii 2691 . . . 4  |-  ( E. x  e.  On  (
( A  \  ( F " x ) )  =  (/)  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  <->  E. x  e.  On  ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  -.  ( A 
\  ( F "
y ) )  =  (/) ) )
2318, 22syl6ibr 219 . . 3  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( ( A  \ 
( F " x
) )  =  (/)  /\ 
A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/) ) ) )
24 nfra1 2716 . . . . 5  |-  F/ x A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )
253, 24nfxfr 1576 . . . 4  |-  F/ x ph
26 simpllr 736 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )
27 fnfun 5501 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  On  ->  Fun  F )
287, 27ax-mp 8 . . . . . . . . . . . . . . . 16  |-  Fun  F
29 fvelima 5737 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  z  e.  ( F " x
) )  ->  E. y  e.  x  ( F `  y )  =  z )
3028, 29mpan 652 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( F "
x )  ->  E. y  e.  x  ( F `  y )  =  z )
31 nfv 1626 . . . . . . . . . . . . . . . . 17  |-  F/ y
ph
32 nfra1 2716 . . . . . . . . . . . . . . . . 17  |-  F/ y A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)
3331, 32nfan 1842 . . . . . . . . . . . . . . . 16  |-  F/ y ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )
34 nfv 1626 . . . . . . . . . . . . . . . 16  |-  F/ y ( x  e.  On  ->  z  e.  A )
35 rsp 2726 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( y  e.  x  ->  ( A  \  ( F " y
) )  =/=  (/) ) )
3635adantld 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( ( x  e.  On  /\  y  e.  x )  ->  ( A  \  ( F "
y ) )  =/=  (/) ) )
37 onelon 4566 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
3815neeq1d 2580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  y  ->  (
( A  \  ( F " x ) )  =/=  (/)  <->  ( A  \ 
( F " y
) )  =/=  (/) ) )
39 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
4039, 15eleq12d 2472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  y  ->  (
( F `  x
)  e.  ( A 
\  ( F "
x ) )  <->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) )
4138, 40imbi12d 312 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  y  ->  (
( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  <->  ( ( A 
\  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4241rspcv 3008 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  On  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  ( ( A  \  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
433, 42syl5bi 209 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  ( ph  ->  ( ( A 
\  ( F "
y ) )  =/=  (/)  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4443com23 74 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  On  ->  (
( A  \  ( F " y ) )  =/=  (/)  ->  ( ph  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) )
4537, 44syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( A  \ 
( F " y
) )  =/=  (/)  ->  ( ph  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4636, 45sylcom 27 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  ->  ( ( x  e.  On  /\  y  e.  x )  ->  ( ph  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4746com3r 75 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
( x  e.  On  /\  y  e.  x )  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
4847imp 419 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( ( x  e.  On  /\  y  e.  x )  ->  ( F `  y )  e.  ( A  \  ( F " y ) ) ) )
4948exp3acom23 1378 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( x  e.  On  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) )
50 eldifi 3429 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  ( F `  y )  e.  A )
51 eleq1 2464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  y )  =  z  ->  (
( F `  y
)  e.  A  <->  z  e.  A ) )
5250, 51syl5ibcom 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  (
( F `  y
)  =  z  -> 
z  e.  A ) )
5349, 52syl8 67 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( x  e.  On  ->  ( ( F `  y )  =  z  ->  z  e.  A
) ) ) )
5453com34 79 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( y  e.  x  ->  ( ( F `  y )  =  z  ->  ( x  e.  On  ->  z  e.  A ) ) ) )
5533, 34, 54rexlimd 2787 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( E. y  e.  x  ( F `  y )  =  z  ->  ( x  e.  On  ->  z  e.  A ) ) )
5630, 55syl5 30 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( z  e.  ( F " x )  ->  ( x  e.  On  ->  z  e.  A ) ) )
5756com23 74 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( x  e.  On  ->  ( z  e.  ( F " x )  ->  z  e.  A
) ) )
5857imp 419 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  (
z  e.  ( F
" x )  -> 
z  e.  A ) )
5958ssrdv 3314 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  ( F " x )  C_  A )
60 ssdif0 3646 . . . . . . . . . . . 12  |-  ( A 
C_  ( F "
x )  <->  ( A  \  ( F " x
) )  =  (/) )
6160biimpri 198 . . . . . . . . . . 11  |-  ( ( A  \  ( F
" x ) )  =  (/)  ->  A  C_  ( F " x ) )
6259, 61anim12i 550 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( ( F " x ) 
C_  A  /\  A  C_  ( F " x
) ) )
63 eqss 3323 . . . . . . . . . 10  |-  ( ( F " x )  =  A  <->  ( ( F " x )  C_  A  /\  A  C_  ( F " x ) ) )
6462, 63sylibr 204 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( F
" x )  =  A )
65 onss 4730 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  x  C_  On )
6632, 31nfan 1842 . . . . . . . . . . . . . . . . 17  |-  F/ y ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )
67 nfv 1626 . . . . . . . . . . . . . . . . 17  |-  F/ y  x  C_  On
6866, 67nfan 1842 . . . . . . . . . . . . . . . 16  |-  F/ y ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )
69 nfv 1626 . . . . . . . . . . . . . . . . . 18  |-  F/ z ( ( ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x )
70 ssel 3302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  On  ->  ( y  e.  x  ->  y  e.  On ) )
71 onss 4730 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  y  C_  On )
72 fndm 5503 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F  Fn  On  ->  dom  F  =  On )
737, 72ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  dom  F  =  On
7471, 73syl6sseqr 3355 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  On  ->  y  C_ 
dom  F )
75 funfvima2 5933 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Fun  F  /\  y  C_ 
dom  F )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F " y ) ) )
7628, 74, 75sylancr 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  On  ->  (
z  e.  y  -> 
( F `  z
)  e.  ( F
" y ) ) )
7770, 76syl6 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
z  e.  y  -> 
( F `  z
)  e.  ( F
" y ) ) ) )
7835com12 29 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( A  \  ( F " y
) )  =/=  (/) ) )
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x 
C_  On  ->  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( A  \  ( F " y
) )  =/=  (/) ) ) )
8070, 79, 44ee23 1370 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x 
C_  On  ->  ( y  e.  x  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  ->  ( ph  ->  ( F `  y
)  e.  ( A 
\  ( F "
y ) ) ) ) ) )
8180imp4a 573 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  ->  ( F `  y )  e.  ( A  \  ( F
" y ) ) ) ) )
82 eldifn 3430 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  -.  ( F `  y )  e.  ( F "
y ) )
83 eleq1a 2473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F `  z )  e.  ( F "
y )  ->  (
( F `  y
)  =  ( F `
 z )  -> 
( F `  y
)  e.  ( F
" y ) ) )
8483con3d 127 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  z )  e.  ( F "
y )  ->  ( -.  ( F `  y
)  e.  ( F
" y )  ->  -.  ( F `  y
)  =  ( F `
 z ) ) )
8582, 84syl5com 28 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  y )  e.  ( A  \ 
( F " y
) )  ->  (
( F `  z
)  e.  ( F
" y )  ->  -.  ( F `  y
)  =  ( F `
 z ) ) )
8681, 85syl8 67 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  ->  ( ( F `
 z )  e.  ( F " y
)  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8786com34 79 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
( F `  z
)  e.  ( F
" y )  -> 
( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8877, 87syldd 63 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
C_  On  ->  ( y  e.  x  ->  (
z  e.  y  -> 
( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
8988com4r 82 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  ( y  e.  x  ->  ( z  e.  y  ->  -.  ( F `  y )  =  ( F `  z ) ) ) ) )
9089imp31 422 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x
)  ->  ( z  e.  y  ->  -.  ( F `  y )  =  ( F `  z ) ) )
9169, 90ralrimi 2747 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  /\  y  e.  x
)  ->  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) )
9291ex 424 . . . . . . . . . . . . . . . 16  |-  ( ( ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  ->  ( y  e.  x  ->  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) ) )
9368, 92ralrimi 2747 . . . . . . . . . . . . . . 15  |-  ( ( ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ph )  /\  x  C_  On )  ->  A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) )
9493ex 424 . . . . . . . . . . . . . 14  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) ) )
9594ancld 537 . . . . . . . . . . . . 13  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  C_  On  ->  ( x  C_  On  /\ 
A. y  e.  x  A. z  e.  y  -.  ( F `  y
)  =  ( F `
 z ) ) ) )
967tz7.48lem 6657 . . . . . . . . . . . . 13  |-  ( ( x  C_  On  /\  A. y  e.  x  A. z  e.  y  -.  ( F `  y )  =  ( F `  z ) )  ->  Fun  `' ( F  |`  x ) )
9765, 95, 96syl56 32 . . . . . . . . . . . 12  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ph )  ->  ( x  e.  On  ->  Fun  `' ( F  |`  x ) ) )
9897ancoms 440 . . . . . . . . . . 11  |-  ( (
ph  /\  A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/) )  -> 
( x  e.  On  ->  Fun  `' ( F  |`  x ) ) )
9998imp 419 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/) )  /\  x  e.  On )  ->  Fun  `' ( F  |`  x
) )
10099adantr 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  Fun  `' ( F  |`  x ) )
10126, 64, 1003jca 1134 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. y  e.  x  ( A  \  ( F
" y ) )  =/=  (/) )  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =  (/) )  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) )
102101exp41 594 . . . . . . 7  |-  ( ph  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
x  e.  On  ->  ( ( A  \  ( F " x ) )  =  (/)  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) ) ) ) )
103102com23 74 . . . . . 6  |-  ( ph  ->  ( x  e.  On  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  (
( A  \  ( F " x ) )  =  (/)  ->  ( A. y  e.  x  ( A  \  ( F "
y ) )  =/=  (/)  /\  ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
) ) ) ) )
104103com34 79 . . . . 5  |-  ( ph  ->  ( x  e.  On  ->  ( ( A  \ 
( F " x
) )  =  (/)  ->  ( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  ->  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) ) ) )
105104imp4a 573 . . . 4  |-  ( ph  ->  ( x  e.  On  ->  ( ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/) )  -> 
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) ) )
10625, 105reximdai 2774 . . 3  |-  ( ph  ->  ( E. x  e.  On  ( ( A 
\  ( F "
x ) )  =  (/)  /\  A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) )
10723, 106syld 42 . 2  |-  ( ph  ->  ( A  e.  B  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) ) ) )
108107impcom 420 1  |-  ( ( A  e.  B  /\  ph )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    C_ wss 3280   (/)c0 3588   Oncon0 4541   `'ccnv 4836   dom cdm 4837    |` cres 4839   "cima 4840   Fun wfun 5407    Fn wfn 5408   ` cfv 5413
This theorem is referenced by:  tz7.49c  6662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421
  Copyright terms: Public domain W3C validator