MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48lem Structured version   Unicode version

Theorem tz7.48lem 7124
Description: A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.48lem  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  A ) )
Distinct variable groups:    y, A, x    x, F, y    x, A

Proof of Theorem tz7.48lem
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r2al 2835 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
2 simpl 457 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  A )  ->  x  e.  A )
32anim1i 568 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  y  e.  x )  ->  (
x  e.  A  /\  y  e.  x )
)
43imim1i 58 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  x
)  ->  -.  ( F `  x )  =  ( F `  y ) )  -> 
( ( ( x  e.  A  /\  y  e.  A )  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
54expd 436 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  x
)  ->  -.  ( F `  x )  =  ( F `  y ) )  -> 
( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
652alimi 1635 . . . . . . 7  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
71, 6sylbi 195 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
8 r2al 2835 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
97, 8sylibr 212 . . . . 5  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )
10 elequ1 1822 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
y  e.  x  <->  w  e.  x ) )
11 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1211eqeq2d 2471 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( F `  x )  =  ( F `  w ) ) )
1312notbid 294 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( -.  ( F `  x
)  =  ( F `
 y )  <->  -.  ( F `  x )  =  ( F `  w ) ) )
1410, 13imbi12d 320 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) )  <->  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) ) )
1514cbvralv 3084 . . . . . . . . . 10  |-  ( A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) )
1615ralbii 2888 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. x  e.  A  A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) )
17 elequ2 1824 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
w  e.  x  <->  w  e.  z ) )
18 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1918eqeq1d 2459 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  =  ( F `
 w )  <->  ( F `  z )  =  ( F `  w ) ) )
2019notbid 294 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( -.  ( F `  x
)  =  ( F `
 w )  <->  -.  ( F `  z )  =  ( F `  w ) ) )
2117, 20imbi12d 320 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) )  <->  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) ) )
2221ralbidv 2896 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) )  <->  A. w  e.  A  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) ) )
2322cbvralv 3084 . . . . . . . . 9  |-  ( A. x  e.  A  A. w  e.  A  (
w  e.  x  ->  -.  ( F `  x
)  =  ( F `
 w ) )  <->  A. z  e.  A  A. w  e.  A  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) )
24 elequ1 1822 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
25 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
2625eqeq2d 2471 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
( F `  z
)  =  ( F `
 w )  <->  ( F `  z )  =  ( F `  x ) ) )
2726notbid 294 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  ( -.  ( F `  z
)  =  ( F `
 w )  <->  -.  ( F `  z )  =  ( F `  x ) ) )
2824, 27imbi12d 320 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) )  <->  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) ) )
2928cbvralv 3084 . . . . . . . . . . 11  |-  ( A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) )
3029ralbii 2888 . . . . . . . . . 10  |-  ( A. z  e.  A  A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. z  e.  A  A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) )
31 elequ2 1824 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
32 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
3332eqeq1d 2459 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( F `  z
)  =  ( F `
 x )  <->  ( F `  y )  =  ( F `  x ) ) )
3433notbid 294 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -.  ( F `  z
)  =  ( F `
 x )  <->  -.  ( F `  y )  =  ( F `  x ) ) )
3531, 34imbi12d 320 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) )  <->  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) ) )
3635ralbidv 2896 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) )  <->  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) ) )
3736cbvralv 3084 . . . . . . . . . 10  |-  ( A. z  e.  A  A. x  e.  A  (
x  e.  z  ->  -.  ( F `  z
)  =  ( F `
 x ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
3830, 37bitri 249 . . . . . . . . 9  |-  ( A. z  e.  A  A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
3916, 23, 383bitri 271 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
40 ralcom2 3022 . . . . . . . 8  |-  ( A. y  e.  A  A. x  e.  A  (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
4139, 40sylbi 195 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
4241ancri 552 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
43 r19.26-2 2985 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  <-> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
4442, 43sylibr 212 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
459, 44syl 16 . . . 4  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
46 fvres 5886 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
47 fvres 5886 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( F  |`  A ) `
 y )  =  ( F `  y
) )
4846, 47eqeqan12d 2480 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  <->  ( F `  x )  =  ( F `  y ) ) )
4948ad2antrl 727 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  <->  ( F `  x )  =  ( F `  y ) ) )
50 ssel 3493 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
51 ssel 3493 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( y  e.  A  ->  y  e.  On ) )
5250, 51anim12d 563 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  On  /\  y  e.  On ) ) )
53 pm3.48 833 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( x  e.  y  \/  y  e.  x )  ->  ( -.  ( F `  y
)  =  ( F `
 x )  \/ 
-.  ( F `  x )  =  ( F `  y ) ) ) )
54 oridm 514 . . . . . . . . . . . . . . 15  |-  ( ( -.  ( F `  x )  =  ( F `  y )  \/  -.  ( F `
 x )  =  ( F `  y
) )  <->  -.  ( F `  x )  =  ( F `  y ) )
55 eqcom 2466 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  x )  =  ( F `  y )  <->  ( F `  y )  =  ( F `  x ) )
5655notbii 296 . . . . . . . . . . . . . . . 16  |-  ( -.  ( F `  x
)  =  ( F `
 y )  <->  -.  ( F `  y )  =  ( F `  x ) )
5756orbi1i 520 . . . . . . . . . . . . . . 15  |-  ( ( -.  ( F `  x )  =  ( F `  y )  \/  -.  ( F `
 x )  =  ( F `  y
) )  <->  ( -.  ( F `  y )  =  ( F `  x )  \/  -.  ( F `  x )  =  ( F `  y ) ) )
5854, 57bitr3i 251 . . . . . . . . . . . . . 14  |-  ( -.  ( F `  x
)  =  ( F `
 y )  <->  ( -.  ( F `  y )  =  ( F `  x )  \/  -.  ( F `  x )  =  ( F `  y ) ) )
5953, 58syl6ibr 227 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( x  e.  y  \/  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
6059con2d 115 . . . . . . . . . . . 12  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( F `
 x )  =  ( F `  y
)  ->  -.  (
x  e.  y  \/  y  e.  x ) ) )
61 eloni 4897 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  Ord  x )
62 eloni 4897 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  Ord  y )
63 ordtri3 4923 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  y )  ->  (
x  =  y  <->  -.  (
x  e.  y  \/  y  e.  x ) ) )
6463biimprd 223 . . . . . . . . . . . . 13  |-  ( ( Ord  x  /\  Ord  y )  ->  ( -.  ( x  e.  y  \/  y  e.  x
)  ->  x  =  y ) )
6561, 62, 64syl2an 477 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( -.  ( x  e.  y  \/  y  e.  x )  ->  x  =  y ) )
6660, 65syl9r 72 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6752, 66syl6 33 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) ) )
6867imp32 433 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
6949, 68sylbid 215 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )
7069exp32 605 . . . . . . 7  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) ) )
7170a2d 26 . . . . . 6  |-  ( A 
C_  On  ->  ( ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )  ->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) ) )
72712alimdv 1712 . . . . 5  |-  ( A 
C_  On  ->  ( A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
( F  |`  A ) `
 x )  =  ( ( F  |`  A ) `  y
)  ->  x  =  y ) ) ) )
73 r2al 2835 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )
74 r2al 2835 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
7572, 73, 743imtr4g 270 . . . 4  |-  ( A 
C_  On  ->  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
7645, 75syl5 32 . . 3  |-  ( A 
C_  On  ->  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( (
( F  |`  A ) `
 x )  =  ( ( F  |`  A ) `  y
)  ->  x  =  y ) ) )
7776imdistani 690 . 2  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  -> 
( A  C_  On  /\ 
A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
78 tz7.48.1 . . . 4  |-  F  Fn  On
79 fnssres 5700 . . . 4  |-  ( ( F  Fn  On  /\  A  C_  On )  -> 
( F  |`  A )  Fn  A )
8078, 79mpan 670 . . 3  |-  ( A 
C_  On  ->  ( F  |`  A )  Fn  A
)
81 dffn2 5738 . . . 4  |-  ( ( F  |`  A )  Fn  A  <->  ( F  |`  A ) : A --> _V )
82 dff13 6167 . . . . . 6  |-  ( ( F  |`  A ) : A -1-1-> _V  <->  ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x )  =  ( ( F  |`  A ) `
 y )  ->  x  =  y )
) )
83 df-f1 5599 . . . . . 6  |-  ( ( F  |`  A ) : A -1-1-> _V  <->  ( ( F  |`  A ) : A --> _V  /\  Fun  `' ( F  |`  A )
) )
8482, 83bitr3i 251 . . . . 5  |-  ( ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  <-> 
( ( F  |`  A ) : A --> _V  /\  Fun  `' ( F  |`  A )
) )
8584simprbi 464 . . . 4  |-  ( ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8681, 85sylanb 472 . . 3  |-  ( ( ( F  |`  A )  Fn  A  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8780, 86sylan 471 . 2  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8877, 87syl 16 1  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1393    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109    C_ wss 3471   Ord word 4886   Oncon0 4887   `'ccnv 5007    |` cres 5010   Fun wfun 5588    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-res 5020  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fv 5602
This theorem is referenced by:  tz7.48-2  7125  tz7.49  7128  zorn2lem4  8896
  Copyright terms: Public domain W3C validator