MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Unicode version

Theorem tz7.44-2 7070
Description: The value of  F at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
tz7.44.2  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
tz7.44.3  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
tz7.44.4  |-  F  Fn  X
tz7.44.5  |-  Ord  X
Assertion
Ref Expression
tz7.44-2  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( H `
 ( F `  B ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y    y, G    x, H    y, X
Allowed substitution hints:    A( y)    G( x)    H( y)    X( x)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 5864 . . . 4  |-  ( y  =  suc  B  -> 
( F `  y
)  =  ( F `
 suc  B )
)
2 reseq2 5266 . . . . 5  |-  ( y  =  suc  B  -> 
( F  |`  y
)  =  ( F  |`  suc  B ) )
32fveq2d 5868 . . . 4  |-  ( y  =  suc  B  -> 
( G `  ( F  |`  y ) )  =  ( G `  ( F  |`  suc  B
) ) )
41, 3eqeq12d 2489 . . 3  |-  ( y  =  suc  B  -> 
( ( F `  y )  =  ( G `  ( F  |`  y ) )  <->  ( F `  suc  B )  =  ( G `  ( F  |`  suc  B ) ) ) )
5 tz7.44.2 . . 3  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
64, 5vtoclga 3177 . 2  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( G `
 ( F  |`  suc  B ) ) )
72eleq1d 2536 . . . 4  |-  ( y  =  suc  B  -> 
( ( F  |`  y )  e.  _V  <->  ( F  |`  suc  B )  e.  _V ) )
8 tz7.44.3 . . . 4  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
97, 8vtoclga 3177 . . 3  |-  ( suc 
B  e.  X  -> 
( F  |`  suc  B
)  e.  _V )
10 noel 3789 . . . . . . 7  |-  -.  B  e.  (/)
11 dmeq 5201 . . . . . . . . 9  |-  ( ( F  |`  suc  B )  =  (/)  ->  dom  ( F  |`  suc  B )  =  dom  (/) )
12 dm0 5214 . . . . . . . . 9  |-  dom  (/)  =  (/)
1311, 12syl6eq 2524 . . . . . . . 8  |-  ( ( F  |`  suc  B )  =  (/)  ->  dom  ( F  |`  suc  B )  =  (/) )
14 tz7.44.5 . . . . . . . . . . . . 13  |-  Ord  X
15 ordsson 6603 . . . . . . . . . . . . 13  |-  ( Ord 
X  ->  X  C_  On )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  X  C_  On
17 ordtr 4892 . . . . . . . . . . . . . 14  |-  ( Ord 
X  ->  Tr  X
)
1814, 17ax-mp 5 . . . . . . . . . . . . 13  |-  Tr  X
19 trsuc 4962 . . . . . . . . . . . . 13  |-  ( ( Tr  X  /\  suc  B  e.  X )  ->  B  e.  X )
2018, 19mpan 670 . . . . . . . . . . . 12  |-  ( suc 
B  e.  X  ->  B  e.  X )
2116, 20sseldi 3502 . . . . . . . . . . 11  |-  ( suc 
B  e.  X  ->  B  e.  On )
22 sucidg 4956 . . . . . . . . . . 11  |-  ( B  e.  On  ->  B  e.  suc  B )
2321, 22syl 16 . . . . . . . . . 10  |-  ( suc 
B  e.  X  ->  B  e.  suc  B )
24 dmres 5292 . . . . . . . . . . 11  |-  dom  ( F  |`  suc  B )  =  ( suc  B  i^i  dom  F )
25 ordelss 4894 . . . . . . . . . . . . . 14  |-  ( ( Ord  X  /\  suc  B  e.  X )  ->  suc  B  C_  X )
2614, 25mpan 670 . . . . . . . . . . . . 13  |-  ( suc 
B  e.  X  ->  suc  B  C_  X )
27 tz7.44.4 . . . . . . . . . . . . . 14  |-  F  Fn  X
28 fndm 5678 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  dom  F  =  X )
2927, 28ax-mp 5 . . . . . . . . . . . . 13  |-  dom  F  =  X
3026, 29syl6sseqr 3551 . . . . . . . . . . . 12  |-  ( suc 
B  e.  X  ->  suc  B  C_  dom  F )
31 df-ss 3490 . . . . . . . . . . . 12  |-  ( suc 
B  C_  dom  F  <->  ( suc  B  i^i  dom  F )  =  suc  B )
3230, 31sylib 196 . . . . . . . . . . 11  |-  ( suc 
B  e.  X  -> 
( suc  B  i^i  dom 
F )  =  suc  B )
3324, 32syl5eq 2520 . . . . . . . . . 10  |-  ( suc 
B  e.  X  ->  dom  ( F  |`  suc  B
)  =  suc  B
)
3423, 33eleqtrrd 2558 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  B  e.  dom  ( F  |`  suc  B ) )
35 eleq2 2540 . . . . . . . . 9  |-  ( dom  ( F  |`  suc  B
)  =  (/)  ->  ( B  e.  dom  ( F  |`  suc  B )  <->  B  e.  (/) ) )
3634, 35syl5ibcom 220 . . . . . . . 8  |-  ( suc 
B  e.  X  -> 
( dom  ( F  |` 
suc  B )  =  (/)  ->  B  e.  (/) ) )
3713, 36syl5 32 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B )  =  (/)  ->  B  e.  (/) ) )
3810, 37mtoi 178 . . . . . 6  |-  ( suc 
B  e.  X  ->  -.  ( F  |`  suc  B
)  =  (/) )
39 iffalse 3948 . . . . . 6  |-  ( -.  ( F  |`  suc  B
)  =  (/)  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  =  if ( Lim 
dom  ( F  |`  suc  B ) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) )
4038, 39syl 16 . . . . 5  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  =  if ( Lim 
dom  ( F  |`  suc  B ) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) )
41 nlimsucg 6655 . . . . . . . 8  |-  ( B  e.  On  ->  -.  Lim  suc  B )
4221, 41syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  ->  -.  Lim  suc  B )
43 limeq 4890 . . . . . . . 8  |-  ( dom  ( F  |`  suc  B
)  =  suc  B  ->  ( Lim  dom  ( F  |`  suc  B )  <->  Lim  suc  B ) )
4433, 43syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( Lim  dom  ( F  |`  suc  B )  <->  Lim  suc  B
) )
4542, 44mtbird 301 . . . . . 6  |-  ( suc 
B  e.  X  ->  -.  Lim  dom  ( F  |` 
suc  B ) )
46 iffalse 3948 . . . . . 6  |-  ( -. 
Lim  dom  ( F  |`  suc  B )  ->  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) )  =  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) )
4745, 46syl 16 . . . . 5  |-  ( suc 
B  e.  X  ->  if ( Lim  dom  ( F  |`  suc  B ) ,  U. ran  ( F  |`  suc  B ) ,  ( H `  ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) ) ) )  =  ( H `  ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) ) ) )
4833unieqd 4255 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  U. dom  ( F  |`  suc  B )  =  U. suc  B )
49 eloni 4888 . . . . . . . . . . 11  |-  ( B  e.  On  ->  Ord  B )
50 ordunisuc 6645 . . . . . . . . . . 11  |-  ( Ord 
B  ->  U. suc  B  =  B )
5149, 50syl 16 . . . . . . . . . 10  |-  ( B  e.  On  ->  U. suc  B  =  B )
5221, 51syl 16 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  U. suc  B  =  B )
5348, 52eqtrd 2508 . . . . . . . 8  |-  ( suc 
B  e.  X  ->  U. dom  ( F  |`  suc  B )  =  B )
5453fveq2d 5868 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) )  =  ( ( F  |`  suc  B
) `  B )
)
55 fvres 5878 . . . . . . . 8  |-  ( B  e.  suc  B  -> 
( ( F  |`  suc  B ) `  B
)  =  ( F `
 B ) )
5623, 55syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  B
)  =  ( F `
 B ) )
5754, 56eqtrd 2508 . . . . . 6  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) )  =  ( F `  B ) )
5857fveq2d 5868 . . . . 5  |-  ( suc 
B  e.  X  -> 
( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) )  =  ( H `  ( F `
 B ) ) )
5940, 47, 583eqtrd 2512 . . . 4  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  =  ( H `  ( F `  B ) ) )
60 fvex 5874 . . . 4  |-  ( H `
 ( F `  B ) )  e. 
_V
6159, 60syl6eqel 2563 . . 3  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  e.  _V )
62 eqeq1 2471 . . . . 5  |-  ( x  =  ( F  |`  suc  B )  ->  (
x  =  (/)  <->  ( F  |` 
suc  B )  =  (/) ) )
63 dmeq 5201 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  dom  x  =  dom  ( F  |`  suc  B ) )
64 limeq 4890 . . . . . . 7  |-  ( dom  x  =  dom  ( F  |`  suc  B )  ->  ( Lim  dom  x 
<->  Lim  dom  ( F  |` 
suc  B ) ) )
6563, 64syl 16 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  ( Lim  dom  x  <->  Lim  dom  ( F  |`  suc  B ) ) )
66 rneq 5226 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  ran  x  =  ran  ( F  |`  suc  B ) )
6766unieqd 4255 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  U. ran  x  =  U. ran  ( F  |`  suc  B ) )
68 fveq1 5863 . . . . . . . 8  |-  ( x  =  ( F  |`  suc  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  x
) )
6963unieqd 4255 . . . . . . . . 9  |-  ( x  =  ( F  |`  suc  B )  ->  U. dom  x  =  U. dom  ( F  |`  suc  B ) )
7069fveq2d 5868 . . . . . . . 8  |-  ( x  =  ( F  |`  suc  B )  ->  (
( F  |`  suc  B
) `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  ( F  |`  suc  B ) ) )
7168, 70eqtrd 2508 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  ( F  |`  suc  B ) ) )
7271fveq2d 5868 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  ( H `  ( x `  U. dom  x ) )  =  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) )
7365, 67, 72ifbieq12d 3966 . . . . 5  |-  ( x  =  ( F  |`  suc  B )  ->  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) )  =  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) )
7462, 73ifbieq2d 3964 . . . 4  |-  ( x  =  ( F  |`  suc  B )  ->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `  U. dom  x ) ) ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
75 tz7.44.1 . . . 4  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
7674, 75fvmptg 5946 . . 3  |-  ( ( ( F  |`  suc  B
)  e.  _V  /\  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  e.  _V )  -> 
( G `  ( F  |`  suc  B ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
779, 61, 76syl2anc 661 . 2  |-  ( suc 
B  e.  X  -> 
( G `  ( F  |`  suc  B ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
786, 77, 593eqtrd 2512 1  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( H `
 ( F `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ifcif 3939   U.cuni 4245    |-> cmpt 4505   Tr wtr 4540   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880   dom cdm 4999   ran crn 5000    |` cres 5001    Fn wfn 5581   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594
This theorem is referenced by:  rdgsucg  7086
  Copyright terms: Public domain W3C validator