MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-2 Structured version   Unicode version

Theorem tz7.44-2 7065
Description: The value of  F at a successor ordinal. Part 2 of Theorem 7.44 of [TakeutiZaring] p. 49. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
tz7.44.2  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
tz7.44.3  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
tz7.44.4  |-  F  Fn  X
tz7.44.5  |-  Ord  X
Assertion
Ref Expression
tz7.44-2  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( H `
 ( F `  B ) ) )
Distinct variable groups:    x, A    x, y, B    x, F, y    y, G    x, H    y, X
Allowed substitution hints:    A( y)    G( x)    H( y)    X( x)

Proof of Theorem tz7.44-2
StepHypRef Expression
1 fveq2 5848 . . . 4  |-  ( y  =  suc  B  -> 
( F `  y
)  =  ( F `
 suc  B )
)
2 reseq2 5257 . . . . 5  |-  ( y  =  suc  B  -> 
( F  |`  y
)  =  ( F  |`  suc  B ) )
32fveq2d 5852 . . . 4  |-  ( y  =  suc  B  -> 
( G `  ( F  |`  y ) )  =  ( G `  ( F  |`  suc  B
) ) )
41, 3eqeq12d 2476 . . 3  |-  ( y  =  suc  B  -> 
( ( F `  y )  =  ( G `  ( F  |`  y ) )  <->  ( F `  suc  B )  =  ( G `  ( F  |`  suc  B ) ) ) )
5 tz7.44.2 . . 3  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
64, 5vtoclga 3170 . 2  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( G `
 ( F  |`  suc  B ) ) )
72eleq1d 2523 . . . 4  |-  ( y  =  suc  B  -> 
( ( F  |`  y )  e.  _V  <->  ( F  |`  suc  B )  e.  _V ) )
8 tz7.44.3 . . . 4  |-  ( y  e.  X  ->  ( F  |`  y )  e. 
_V )
97, 8vtoclga 3170 . . 3  |-  ( suc 
B  e.  X  -> 
( F  |`  suc  B
)  e.  _V )
10 noel 3787 . . . . . . 7  |-  -.  B  e.  (/)
11 dmeq 5192 . . . . . . . . 9  |-  ( ( F  |`  suc  B )  =  (/)  ->  dom  ( F  |`  suc  B )  =  dom  (/) )
12 dm0 5205 . . . . . . . . 9  |-  dom  (/)  =  (/)
1311, 12syl6eq 2511 . . . . . . . 8  |-  ( ( F  |`  suc  B )  =  (/)  ->  dom  ( F  |`  suc  B )  =  (/) )
14 tz7.44.5 . . . . . . . . . . . . 13  |-  Ord  X
15 ordsson 6598 . . . . . . . . . . . . 13  |-  ( Ord 
X  ->  X  C_  On )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  X  C_  On
17 ordtr 4881 . . . . . . . . . . . . . 14  |-  ( Ord 
X  ->  Tr  X
)
1814, 17ax-mp 5 . . . . . . . . . . . . 13  |-  Tr  X
19 trsuc 4951 . . . . . . . . . . . . 13  |-  ( ( Tr  X  /\  suc  B  e.  X )  ->  B  e.  X )
2018, 19mpan 668 . . . . . . . . . . . 12  |-  ( suc 
B  e.  X  ->  B  e.  X )
2116, 20sseldi 3487 . . . . . . . . . . 11  |-  ( suc 
B  e.  X  ->  B  e.  On )
22 sucidg 4945 . . . . . . . . . . 11  |-  ( B  e.  On  ->  B  e.  suc  B )
2321, 22syl 16 . . . . . . . . . 10  |-  ( suc 
B  e.  X  ->  B  e.  suc  B )
24 dmres 5282 . . . . . . . . . . 11  |-  dom  ( F  |`  suc  B )  =  ( suc  B  i^i  dom  F )
25 ordelss 4883 . . . . . . . . . . . . . 14  |-  ( ( Ord  X  /\  suc  B  e.  X )  ->  suc  B  C_  X )
2614, 25mpan 668 . . . . . . . . . . . . 13  |-  ( suc 
B  e.  X  ->  suc  B  C_  X )
27 tz7.44.4 . . . . . . . . . . . . . 14  |-  F  Fn  X
28 fndm 5662 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  dom  F  =  X )
2927, 28ax-mp 5 . . . . . . . . . . . . 13  |-  dom  F  =  X
3026, 29syl6sseqr 3536 . . . . . . . . . . . 12  |-  ( suc 
B  e.  X  ->  suc  B  C_  dom  F )
31 df-ss 3475 . . . . . . . . . . . 12  |-  ( suc 
B  C_  dom  F  <->  ( suc  B  i^i  dom  F )  =  suc  B )
3230, 31sylib 196 . . . . . . . . . . 11  |-  ( suc 
B  e.  X  -> 
( suc  B  i^i  dom 
F )  =  suc  B )
3324, 32syl5eq 2507 . . . . . . . . . 10  |-  ( suc 
B  e.  X  ->  dom  ( F  |`  suc  B
)  =  suc  B
)
3423, 33eleqtrrd 2545 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  B  e.  dom  ( F  |`  suc  B ) )
35 eleq2 2527 . . . . . . . . 9  |-  ( dom  ( F  |`  suc  B
)  =  (/)  ->  ( B  e.  dom  ( F  |`  suc  B )  <->  B  e.  (/) ) )
3634, 35syl5ibcom 220 . . . . . . . 8  |-  ( suc 
B  e.  X  -> 
( dom  ( F  |` 
suc  B )  =  (/)  ->  B  e.  (/) ) )
3713, 36syl5 32 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B )  =  (/)  ->  B  e.  (/) ) )
3810, 37mtoi 178 . . . . . 6  |-  ( suc 
B  e.  X  ->  -.  ( F  |`  suc  B
)  =  (/) )
3938iffalsed 3940 . . . . 5  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  =  if ( Lim 
dom  ( F  |`  suc  B ) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) )
40 nlimsucg 6650 . . . . . . . 8  |-  ( B  e.  On  ->  -.  Lim  suc  B )
4121, 40syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  ->  -.  Lim  suc  B )
42 limeq 4879 . . . . . . . 8  |-  ( dom  ( F  |`  suc  B
)  =  suc  B  ->  ( Lim  dom  ( F  |`  suc  B )  <->  Lim  suc  B ) )
4333, 42syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( Lim  dom  ( F  |`  suc  B )  <->  Lim  suc  B
) )
4441, 43mtbird 299 . . . . . 6  |-  ( suc 
B  e.  X  ->  -.  Lim  dom  ( F  |` 
suc  B ) )
4544iffalsed 3940 . . . . 5  |-  ( suc 
B  e.  X  ->  if ( Lim  dom  ( F  |`  suc  B ) ,  U. ran  ( F  |`  suc  B ) ,  ( H `  ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) ) ) )  =  ( H `  ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) ) ) )
4633unieqd 4245 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  U. dom  ( F  |`  suc  B )  =  U. suc  B )
47 eloni 4877 . . . . . . . . . . 11  |-  ( B  e.  On  ->  Ord  B )
48 ordunisuc 6640 . . . . . . . . . . 11  |-  ( Ord 
B  ->  U. suc  B  =  B )
4947, 48syl 16 . . . . . . . . . 10  |-  ( B  e.  On  ->  U. suc  B  =  B )
5021, 49syl 16 . . . . . . . . 9  |-  ( suc 
B  e.  X  ->  U. suc  B  =  B )
5146, 50eqtrd 2495 . . . . . . . 8  |-  ( suc 
B  e.  X  ->  U. dom  ( F  |`  suc  B )  =  B )
5251fveq2d 5852 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) )  =  ( ( F  |`  suc  B
) `  B )
)
53 fvres 5862 . . . . . . . 8  |-  ( B  e.  suc  B  -> 
( ( F  |`  suc  B ) `  B
)  =  ( F `
 B ) )
5423, 53syl 16 . . . . . . 7  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  B
)  =  ( F `
 B ) )
5552, 54eqtrd 2495 . . . . . 6  |-  ( suc 
B  e.  X  -> 
( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B
) )  =  ( F `  B ) )
5655fveq2d 5852 . . . . 5  |-  ( suc 
B  e.  X  -> 
( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) )  =  ( H `  ( F `
 B ) ) )
5739, 45, 563eqtrd 2499 . . . 4  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  =  ( H `  ( F `  B ) ) )
58 fvex 5858 . . . 4  |-  ( H `
 ( F `  B ) )  e. 
_V
5957, 58syl6eqel 2550 . . 3  |-  ( suc 
B  e.  X  ->  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  e.  _V )
60 eqeq1 2458 . . . . 5  |-  ( x  =  ( F  |`  suc  B )  ->  (
x  =  (/)  <->  ( F  |` 
suc  B )  =  (/) ) )
61 dmeq 5192 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  dom  x  =  dom  ( F  |`  suc  B ) )
62 limeq 4879 . . . . . . 7  |-  ( dom  x  =  dom  ( F  |`  suc  B )  ->  ( Lim  dom  x 
<->  Lim  dom  ( F  |` 
suc  B ) ) )
6361, 62syl 16 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  ( Lim  dom  x  <->  Lim  dom  ( F  |`  suc  B ) ) )
64 rneq 5217 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  ran  x  =  ran  ( F  |`  suc  B ) )
6564unieqd 4245 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  U. ran  x  =  U. ran  ( F  |`  suc  B ) )
66 fveq1 5847 . . . . . . . 8  |-  ( x  =  ( F  |`  suc  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  x
) )
6761unieqd 4245 . . . . . . . . 9  |-  ( x  =  ( F  |`  suc  B )  ->  U. dom  x  =  U. dom  ( F  |`  suc  B ) )
6867fveq2d 5852 . . . . . . . 8  |-  ( x  =  ( F  |`  suc  B )  ->  (
( F  |`  suc  B
) `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  ( F  |`  suc  B ) ) )
6966, 68eqtrd 2495 . . . . . . 7  |-  ( x  =  ( F  |`  suc  B )  ->  (
x `  U. dom  x
)  =  ( ( F  |`  suc  B ) `
 U. dom  ( F  |`  suc  B ) ) )
7069fveq2d 5852 . . . . . 6  |-  ( x  =  ( F  |`  suc  B )  ->  ( H `  ( x `  U. dom  x ) )  =  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) )
7163, 65, 70ifbieq12d 3956 . . . . 5  |-  ( x  =  ( F  |`  suc  B )  ->  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) )  =  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) )
7260, 71ifbieq2d 3954 . . . 4  |-  ( x  =  ( F  |`  suc  B )  ->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `  U. dom  x ) ) ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
73 tz7.44.1 . . . 4  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
7472, 73fvmptg 5929 . . 3  |-  ( ( ( F  |`  suc  B
)  e.  _V  /\  if ( ( F  |`  suc  B )  =  (/) ,  A ,  if ( Lim  dom  ( F  |` 
suc  B ) , 
U. ran  ( F  |` 
suc  B ) ,  ( H `  (
( F  |`  suc  B
) `  U. dom  ( F  |`  suc  B ) ) ) ) )  e.  _V )  -> 
( G `  ( F  |`  suc  B ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
759, 59, 74syl2anc 659 . 2  |-  ( suc 
B  e.  X  -> 
( G `  ( F  |`  suc  B ) )  =  if ( ( F  |`  suc  B
)  =  (/) ,  A ,  if ( Lim  dom  ( F  |`  suc  B
) ,  U. ran  ( F  |`  suc  B
) ,  ( H `
 ( ( F  |`  suc  B ) `  U. dom  ( F  |`  suc  B ) ) ) ) ) )
766, 75, 573eqtrd 2499 1  |-  ( suc 
B  e.  X  -> 
( F `  suc  B )  =  ( H `
 ( F `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1398    e. wcel 1823   _Vcvv 3106    i^i cin 3460    C_ wss 3461   (/)c0 3783   ifcif 3929   U.cuni 4235    |-> cmpt 4497   Tr wtr 4532   Ord word 4866   Oncon0 4867   Lim wlim 4868   suc csuc 4869   dom cdm 4988   ran crn 4989    |` cres 4990    Fn wfn 5565   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-iota 5534  df-fun 5572  df-fn 5573  df-fv 5578
This theorem is referenced by:  rdgsucg  7081
  Copyright terms: Public domain W3C validator