Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12c Structured version   Unicode version

Theorem tz6.12c 5901
 Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12c
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12c
StepHypRef Expression
1 euex 2293 . . . 4
2 nfeu1 2279 . . . . . 6
3 nfv 1755 . . . . . 6
42, 3nfim 1980 . . . . 5
5 tz6.12-1 5898 . . . . . . . 8
65expcom 436 . . . . . . 7
7 breq2 4427 . . . . . . . 8
87biimprd 226 . . . . . . 7
96, 8syli 38 . . . . . 6
109com12 32 . . . . 5
114, 10exlimi 1972 . . . 4
121, 11mpcom 37 . . 3
1312, 7syl5ibcom 223 . 2
1413, 6impbid 193 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wceq 1437  wex 1657  weu 2269   class class class wbr 4423  cfv 5601 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-iota 5565  df-fv 5609 This theorem is referenced by:  tz6.12i  5902  fnbrfvb  5922
 Copyright terms: Public domain W3C validator