MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12c Structured version   Unicode version

Theorem tz6.12c 5875
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12c  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  <->  A F y ) )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12c
StepHypRef Expression
1 euex 2294 . . . 4  |-  ( E! y  A F y  ->  E. y  A F y )
2 nfeu1 2280 . . . . . 6  |-  F/ y E! y  A F y
3 nfv 1694 . . . . . 6  |-  F/ y  A F ( F `
 A )
42, 3nfim 1906 . . . . 5  |-  F/ y ( E! y  A F y  ->  A F ( F `  A ) )
5 tz6.12-1 5872 . . . . . . . 8  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
65expcom 435 . . . . . . 7  |-  ( E! y  A F y  ->  ( A F y  ->  ( F `  A )  =  y ) )
7 breq2 4441 . . . . . . . 8  |-  ( ( F `  A )  =  y  ->  ( A F ( F `  A )  <->  A F
y ) )
87biimprd 223 . . . . . . 7  |-  ( ( F `  A )  =  y  ->  ( A F y  ->  A F ( F `  A ) ) )
96, 8syli 37 . . . . . 6  |-  ( E! y  A F y  ->  ( A F y  ->  A F
( F `  A
) ) )
109com12 31 . . . . 5  |-  ( A F y  ->  ( E! y  A F
y  ->  A F
( F `  A
) ) )
114, 10exlimi 1898 . . . 4  |-  ( E. y  A F y  ->  ( E! y  A F y  ->  A F ( F `  A ) ) )
121, 11mpcom 36 . . 3  |-  ( E! y  A F y  ->  A F ( F `  A ) )
1312, 7syl5ibcom 220 . 2  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  ->  A F
y ) )
1413, 6impbid 191 1  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  <->  A F y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1383   E.wex 1599   E!weu 2268   class class class wbr 4437   ` cfv 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586
This theorem is referenced by:  tz6.12i  5876  fnbrfvb  5898
  Copyright terms: Public domain W3C validator