Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv Structured version   Unicode version

Theorem tz6.12-afv 32497
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12 5865. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
tz6.12-afv  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F''' A )  =  y )
Distinct variable groups:    y, A    y, F

Proof of Theorem tz6.12-afv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 455 . . . . . . . 8  |-  ( ( A  e.  _V  /\  <. A ,  y >.  e.  F )  ->  A  e.  _V )
2 vex 3109 . . . . . . . . 9  |-  y  e. 
_V
32a1i 11 . . . . . . . 8  |-  ( ( A  e.  _V  /\  <. A ,  y >.  e.  F )  ->  y  e.  _V )
4 df-br 4440 . . . . . . . . . 10  |-  ( A F y  <->  <. A , 
y >.  e.  F )
54biimpri 206 . . . . . . . . 9  |-  ( <. A ,  y >.  e.  F  ->  A F
y )
65adantl 464 . . . . . . . 8  |-  ( ( A  e.  _V  /\  <. A ,  y >.  e.  F )  ->  A F y )
7 breldmg 5197 . . . . . . . 8  |-  ( ( A  e.  _V  /\  y  e.  _V  /\  A F y )  ->  A  e.  dom  F )
81, 3, 6, 7syl3anc 1226 . . . . . . 7  |-  ( ( A  e.  _V  /\  <. A ,  y >.  e.  F )  ->  A  e.  dom  F )
9 simpl 455 . . . . . . . . 9  |-  ( ( A  e.  dom  F  /\  E! y <. A , 
y >.  e.  F )  ->  A  e.  dom  F )
10 elsn 4030 . . . . . . . . . . . . . 14  |-  ( x  e.  { A }  <->  x  =  A )
11 breq1 4442 . . . . . . . . . . . . . . . . . 18  |-  ( A  =  x  ->  ( A F y  <->  x F
y ) )
124, 11syl5bbr 259 . . . . . . . . . . . . . . . . 17  |-  ( A  =  x  ->  ( <. A ,  y >.  e.  F  <->  x F y ) )
1312eqcoms 2466 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  ( <. A ,  y >.  e.  F  <->  x F y ) )
1413eubidv 2306 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  ( E! y <. A ,  y
>.  e.  F  <->  E! y  x F y ) )
1514biimpd 207 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( E! y <. A ,  y
>.  e.  F  ->  E! y  x F y ) )
1610, 15sylbi 195 . . . . . . . . . . . . 13  |-  ( x  e.  { A }  ->  ( E! y <. A ,  y >.  e.  F  ->  E! y  x F y ) )
1716com12 31 . . . . . . . . . . . 12  |-  ( E! y <. A ,  y
>.  e.  F  ->  (
x  e.  { A }  ->  E! y  x F y ) )
1817adantl 464 . . . . . . . . . . 11  |-  ( ( A  e.  dom  F  /\  E! y <. A , 
y >.  e.  F )  ->  ( x  e. 
{ A }  ->  E! y  x F y ) )
1918ralrimiv 2866 . . . . . . . . . 10  |-  ( ( A  e.  dom  F  /\  E! y <. A , 
y >.  e.  F )  ->  A. x  e.  { A } E! y  x F y )
20 fnres 5679 . . . . . . . . . . 11  |-  ( ( F  |`  { A } )  Fn  { A }  <->  A. x  e.  { A } E! y  x F y )
21 fnfun 5660 . . . . . . . . . . 11  |-  ( ( F  |`  { A } )  Fn  { A }  ->  Fun  ( F  |`  { A }
) )
2220, 21sylbir 213 . . . . . . . . . 10  |-  ( A. x  e.  { A } E! y  x F y  ->  Fun  ( F  |`  { A } ) )
2319, 22syl 16 . . . . . . . . 9  |-  ( ( A  e.  dom  F  /\  E! y <. A , 
y >.  e.  F )  ->  Fun  ( F  |` 
{ A } ) )
249, 23jca 530 . . . . . . . 8  |-  ( ( A  e.  dom  F  /\  E! y <. A , 
y >.  e.  F )  ->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
2524ex 432 . . . . . . 7  |-  ( A  e.  dom  F  -> 
( E! y <. A ,  y >.  e.  F  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
268, 25syl 16 . . . . . 6  |-  ( ( A  e.  _V  /\  <. A ,  y >.  e.  F )  ->  ( E! y <. A ,  y
>.  e.  F  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
2726impr 617 . . . . 5  |-  ( ( A  e.  _V  /\  ( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F ) )  ->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
28 df-dfat 32440 . . . . . 6  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
29 afvfundmfveq 32462 . . . . . 6  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
3028, 29sylbir 213 . . . . 5  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  ( F `  A ) )
3127, 30syl 16 . . . 4  |-  ( ( A  e.  _V  /\  ( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F ) )  ->  ( F''' A )  =  ( F `  A ) )
32 tz6.12 5865 . . . . 5  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
3332adantl 464 . . . 4  |-  ( ( A  e.  _V  /\  ( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F ) )  ->  ( F `  A )  =  y )
3431, 33eqtrd 2495 . . 3  |-  ( ( A  e.  _V  /\  ( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F ) )  ->  ( F''' A )  =  y )
3534ex 432 . 2  |-  ( A  e.  _V  ->  (
( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F )  -> 
( F''' A )  =  y ) )
36 eu2ndop1stv 32446 . . . . 5  |-  ( E! y <. A ,  y
>.  e.  F  ->  A  e.  _V )
3736pm2.24d 143 . . . 4  |-  ( E! y <. A ,  y
>.  e.  F  ->  ( -.  A  e.  _V  ->  ( F''' A )  =  y ) )
3837adantl 464 . . 3  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( -.  A  e.  _V  ->  ( F''' A )  =  y ) )
3938com12 31 . 2  |-  ( -.  A  e.  _V  ->  ( ( <. A ,  y
>.  e.  F  /\  E! y <. A ,  y
>.  e.  F )  -> 
( F''' A )  =  y ) )
4035, 39pm2.61i 164 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F''' A )  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   E!weu 2284   A.wral 2804   _Vcvv 3106   {csn 4016   <.cop 4022   class class class wbr 4439   dom cdm 4988    |` cres 4990   Fun wfun 5564    Fn wfn 5565   ` cfv 5570   defAt wdfat 32437  '''cafv 32438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-res 5000  df-iota 5534  df-fun 5572  df-fn 5573  df-fv 5578  df-dfat 32440  df-afv 32441
This theorem is referenced by:  tz6.12-1-afv  32498
  Copyright terms: Public domain W3C validator